45 research outputs found

    Function of Chick Subcutaneous Adipose Tissue During the Embryonic and Posthatch Period

    Get PDF
    Since excess abdominal fat is one of the main problems in the broiler industry for the development of modern broiler and layer industry, the importance of subcutaneous adipose tissue has been neglected. However, chick subcutaneous adipose tissue appeared earlier than abdominal adipose tissue and more than abdominal adipose tissue. Despite a wealth of data, detailed information is lacking about the development and function of chick subcutaneous adipose tissue during the embryonic and posthatch period. Therefore, the objective of the current study was to determine the developmental changes of adipocyte differentiation, lipid synthesis, lipolysis, fatty acid β-oxidation, and lipid contents from E12 to D9.5. The results showed that subcutaneous adipose tissue was another important energy supply tissue during the posthatch period. In this stage, the mitochondrial copy number and fatty acid β-oxidation level significantly increased. It revealed that chick subcutaneous adipose tissue not only has the function of energy supply by lipidolysis but also performs the same function as brown adipose tissue to some extent, despite that the brown adipose tissue does not exist in birds. In addition, this finding improved the theory of energy supply in the embryonic and posthatch period and might provide theoretical basis on physiological characteristics of lipid metabolism in chicks

    Editorial: Cryopreservation of mammalian gametes and embryos: implications of oxidative and nitrosative stress and potential role of antioxidants

    Get PDF
    4 Pág.This work was financially supported by the National Key Research and Development Program of China (Grant No. 2021YFD1200403).Peer reviewe

    Cattle Mammary Bioreactor Generated by a Novel Procedure of Transgenic Cloning for Large-Scale Production of Functional Human Lactoferrin

    Get PDF
    Large-scale production of biopharmaceuticals by current bioreactor techniques is limited by low transgenic efficiency and low expression of foreign proteins. In general, a bacterial artificial chromosome (BAC) harboring most regulatory elements is capable of overcoming the limitations, but transferring BAC into donor cells is difficult. We describe here the use of cattle mammary bioreactor to produce functional recombinant human lactoferrin (rhLF) by a novel procedure of transgenic cloning, which employs microinjection to generate transgenic somatic cells as donor cells. Bovine fibroblast cells were co-microinjected for the first time with a 150-kb BAC carrying the human lactoferrin gene and a marker gene. The resulting transfection efficiency of up to 15.79×10−2 percent was notably higher than that of electroporation and lipofection. Following somatic cell nuclear transfer, we obtained two transgenic cows that secreted rhLF at high levels, 2.5 g/l and 3.4 g/l, respectively. The rhLF had a similar pattern of glycosylation and proteolytic susceptibility as the natural human counterpart. Biochemical analysis revealed that the iron-binding and releasing properties of rhLF were identical to that of native hLF. Importantly, an antibacterial experiment further demonstrated that rhLF was functional. Our results indicate that co-microinjection with a BAC and a marker gene into donor cells for somatic cell cloning indeed improves transgenic efficiency. Moreover, the cattle mammary bioreactors generated with this novel procedure produce functional rhLF on an industrial scale

    High-Sensitivity Pressure Sensors Based on a Low Elastic Modulus Adhesive

    No full text
    With the rapid development of intelligent applications, the demand for high-sensitivity pressure sensor is increasing. However, the simple and efficient preparation of an industrial high-sensitivity sensor is still a challenge. In this study, adhesives with different elastic moduli are used to bond pressure-sensitive elements of double-sided sensitive grids to prepare a highly sensitive and fatigue-resistant pressure sensor. It was observed that the low elastic modulus adhesive effectively produced tensile and compressive strains on both sides of the sensitive grids to induce greater strain transfer efficiency in the pressure sensor, thus improving its sensitivity. The sensitivity of the sensor was simulated by finite element analysis to verify that the low elastic modulus adhesive could enhance the sensitivity of the sensor up to 12%. The preparation of high-precision and fatigue-resistant pressure sensors based on low elastic modulus, double-sided sensitive grids makes their application more flexible and convenient, which is urgently needed in the miniaturization and integration electronics field

    Functional Analysis of Haplotypes in Bovine PSAP Gene and Their Relationship with Beef Cattle Production Traits

    No full text
    The purpose of this study was to explore functional variants in the prosaposin (PSAP) three prime untranslated region (3’ UTR) and clarify the relationship between the variants and morphological traits. Through Sanger sequencing, 13 variations were identified in bovine PSAP in four Chinese cattle breeds, with six of them being loci in 3’ UTR. In particular, Nanyang (NY) cattle had a special genotype and haplotype distribution compared to the other three breeds. NY cattle with ACATG and GCGTG haplotypes had higher morphological traits than GTACA and GTACG haplotypes. The results of dual-luciferase reporter assay showed that ACATG and GCGTG haplotypes affected the morphological traits of NY cattle by altering the secondary structure of PSAP 3’ UTR rather than the miR-184 target sites. The findings of this study could be an evidence of a complex and varying mechanism between variants and animal morphological traits and could be used to complement candidate genes for molecular breeding

    A Machine Learning-Assisted Inversion Method for Solving Biomedical Imaging Based on Semi-Experimental Data

    No full text
    Machine learning approaches have been extensively utilized in the field of inverse scattering problems. Typically, the training dataset is generated synthetically using ideal radiation sources such as plane waves or cylindrical waves. However, the testing data often consist of experimental data that take into account the antenna port couplings and waveform distortions within the system. While noise can be artificially added to synthetic data, it may not accurately represent the real experimental noise. Consequently, the application of machine learning-assisted inversion techniques may encounter challenges when the training dataset differs significantly from the experimental data. In this paper, we propose an experimental system specifically designed for human body imaging. A semi-experimental training dataset is constructed using full-wave simulation software, incorporating the relative permittivities of common human tissues. Furthermore, the system noise is meticulously considered through full-wave simulation, enhancing the authenticity of the dataset. A back-propagation scheme is firstly employed to obtain the rough reconstructed images. Then, the U-net convolutional neural network (CNN) is employed to map these rough images to high-resolution ones. Numerical results demonstrate that, in comparison to networks trained solely on synthetic data, the network trained using semi-experimental data achieves superior reconstruction results with lower errors and improved image quality

    Novel Mechanism for Nisin Resistance via Proteolytic Degradation of Nisin by the Nisin Resistance Protein NSR▿

    No full text
    Nisin is a 34-residue antibacterial peptide produced by Lactococcus lactis that is active against a wide range of gram-positive bacteria. In non-nisin-producing L. lactis, nisin resistance could be conferred by a specific nisin resistance gene (nsr), which encodes a 35-kDa nisin resistance protein (NSR). However, the mechanism underlying NSR-mediated nisin resistance is poorly understood. Here we demonstrated that the protein without the predicted N-terminal signal peptide sequence, i.e., NSRSD, could proteolytically inactivate nisin in vitro by removing six amino acids from the carboxyl “tail” of nisin. The truncated nisin (nisin1-28) displayed a markedly reduced affinity for the cell membrane and showed significantly diminished pore-forming potency in the membrane. A 100-fold reduction of bactericidal activity was detected for nisin1-28 in comparison to that for the intact nisin. In vivo analysis indicated that NSR localized on the cell membrane and endowed host strains with nisin resistance by degrading nisin as NSRSD did in vitro, whereas NSRSD failed to confer resistance upon the host strain. In conclusion, we showed that NSR is a nisin-degrading protease. This NSR-mediated proteolytic cleavage represents a novel mechanism for nisin resistance in non-nisin-producing L. lactis
    corecore