204 research outputs found

    Long-Term Tai Chi Experience Promotes Emotional Stability and Slows Gray Matter Atrophy for Elders

    Get PDF
    Brain adverse structural changes, especially the atrophy of gray matter, are inevitable in aging. Fortunately, the human brain is plastic throughout its entire life. The current cross-section study aimed to investigate whether long-term Tai Chi exercise could slow gray matter atrophy and explore the possible links among gray matter volume (GMV), long-term Tai Chi experience and emotional stability in a sequential risk-taking task by using voxel-based morphometry. Elders with long-term Tai Chi experience and controls, who were matched to Tai Chi group in age, gender, physical activity level, participated in the study. A T1-weighted multiplanar reconstruction sequence was acquired for each participant. Behaviorally, the Tai Chi group showed higher meditation level, stronger emotional stability and less risk-taking tendency in the sequential risk-taking compared to the control group. Moreover, the results revealed that the GMV of the thalamus and hippocampus were larger in the Tai Chi group compared with the control group. Notably, the GMV of the thalamus was positively correlated with both meditation level and emotional stability. The current study suggested the protective role of long-term Tai Chi exercise at slowing gray matter atrophy, improving the emotional stability and achieving successful aging for elders

    Functional Connectivity Within the Executive Control Network Mediates the Effects of Long-Term Tai Chi Exercise on Elders’ Emotion Regulation

    Get PDF
    Previous research has identified the effects of tai chi exercise on elders’ executive control or on their emotion regulation. However, few works have attempted to reveal the relationships between tai chi, executive control, and emotion regulation in the same study. The current resting-state study investigated whether the impact of tai chi on elders’ emotion regulation was mediated by the resting-state functional connectivity within the executive control network. A total of 26 elders with long-term tai chi experience and 26 demographically matched healthy elders were recruited. After the resting-state scan, both groups were required to complete a series of questionnaires, including the Five Facets Mindfulness Questionnaire (FFMQ), and a sequential decision task, which offered an index of the subjects’ emotion-regulation ability by calculating how their emotional response could be affected by the objective outcomes of their decisions. Compared to the control group, the tai chi group showed higher levels of non-judgment of inner experiences (a component of the FFMQ), stronger emotion-regulation ability, and a weaker resting-state functional connectivity between the dorsolateral prefrontal cortex (DLPFC) and the middle frontal gyrus (MFG). Moreover, the functional connectivity between the DLPFC and the MFG in the tai chi group fully mediated the impact of non-judgment of inner experience on their emotion-regulation ability. These findings highlighted that the modulation of non-judgment of inner experience on long-term tai chi practitioners’ emotion regulation was achieved through decreased functional connectivity within the executive control network

    Association Study Reveals Genetic Loci Responsible for Arsenic, Cadmium and Lead Accumulation in Rice Grain in Contaminated Farmlands

    Get PDF
    Accumulation of toxic heavy metals and metalloids (THMMs) in crop grain remarkably affects food safety and human health. Reducing the content of THMMs in grain requires the identification and manipulation of the genes regulating their accumulation. This study aimed to determine the genetic variations affecting grain THMM accumulation in rice by using association mapping. We used 276 accessions with 416 K single nucleotide polymorphisms (SNPs) and performed genome-wide association analysis of grain THMM concentrations in rice grown in heavily multi-contaminated farmlands. We detected 22, 17, and 21 quantitative trait loci (QTLs) for grain arsenic, cadmium, and lead concentrations, respectively. Both inter- and intra-subpopulation variants accounted for these QTLs. Most QTLs contained no known THMM-related genes and represented unidentified novel genes. We examined the candidate genes in qGAS1, a QTL for grain arsenic concentration with the best P-value detected for the entire population. We speculated that a transport protein of the multidrug and toxin extrusion family could be the candidate gene for this QTL. Our study suggested that the genetic regulation of grain THMM accumulation is very complex and largely unknown. The QTLs and SNPs identified in this study might help in the identification of new genes regulating THMM accumulation and aid in marker-assisted breeding of rice with low grain THMM content

    Growth performance, organ-level ionic relations and organic osmoregulation of Elaeagnus angustifolia in response to salt stress

    Get PDF
    Elaeagnus angustifolia is one of the most extensively afforested tree species in environment-harsh regions of northern China. Despite its exceptional tolerance to saline soil, the intrinsic adaptive physiology has not been revealed. In this study, we investigated the growth, organ-level ionic relations and organic osmoregulation of the seedlings hydroponically treated with 0, 100 and 200 mM NaCl for 30 days. We found that the growth characteristics and the whole-plant dry weight were not obviously stunted, but instead, were even slightly stimulated by the treatment of 100 mM NaCl. In contrast, these traits were significantly inhibited by 200 mM NaCl treatment. Interestingly, as compared with the control (0 mM NaCl), both 100 and 200 mM NaCl treatments had a promotional effect on root growth as evidenced by 26.3% and 2.4% increases in root dry weight, respectively. Roots had the highest Na+ and Cl- concentrations and obviously served as the sink for the net increased Na+ and Cl-, while, stems might maintain the capacity of effective Na+ constraint, resulting in reduced Na+ transport to the leaves. K+, Ca2+ and Mg2+ concentrations in three plant organs of NaCl-treated seedlings presented a substantial decline, eventually leading to an enormously drop of K+/Na+ ratio. As the salt concentration increased, proline and soluble protein contents continuously exhibited a prominent and a relatively tardy accumulation, respectively, whereas soluble sugar firstly fell to a significant level and then regained to a level that is close to that of the control. Taken together, our results provided quantitative measures that revealed some robust adaptive physiological mechanisms underpinning E. angustifolia’s moderately high salt tolerance, and those mechanisms comprise scalable capacity for root Na+ and Cl- storage, effectively constrained transportation of Na+ from stems to leaves, root compensatory growth, as well as an immediate and prominent leaf proline accumulation

    Electromagnetic Separation of High-abundance Rubidium-87 and Its Application

    Get PDF
    The rubidium clock,as the core part of the Beidou satellite navigation and positioning system,mainly provides high-precision time reference signals. Its accuracy will directly affect the performance of the Beidou system. The high abundance isotope rubidium 87 is the core working material of rubidium clocks. Its abundance is an important factor affecting the accuracy of atomic clocks. The high-abundance rubidium-87 isotopes required for the separation of rubidium bells in the United States and Russia,two major isotope producing countries,use electromagnetic separation technology. At present,the production of rubidium 87 isotopes for electromagnetic isotope separation in China can only meet a small portion of the demand. With the arrival of the 5G era,the demand for high abundance rubidium isotopes in fields such as aerospace and chip clocks has significantly increased. It will further increase the gap in domestic rubidium isotopes. It is expected that the demand for rubidium 87 will reach several hundred grams to several kilograms per year in the future. By analyzing the current development status of the quantum time-frequency field and understanding the demand of rubidium clocks for rubidium 87 isotopes in the quantum time-frequency field,it provides guidance for the industrial development and ideas of electromagnetic separation and preparation of rubidium isotopes in the future.Promoting the industrial development of rubidium 87 isotope separation and preparation as soon as possible. Through technological breakthroughs and large-scale construction,separation efficiency can be improved and production costs can be reduced. This will provide important guarantees for the autonomous control of rubidium 87 isotopes

    The Systemic Evaluation and Clinical Significance of Immunological Function for Advanced Lung Cancer Patients

    Get PDF
    Background and objective The actual evaluation of immunological function is significant for studing the tumor development and devising a treatment in time. The aim of this study is to evaluate the immunological function of advanced lung cancer patients systematically, and to discuss the clinical significance. Methods The nucleated cell amounts of advanced lung cancer patients and the healthy individuals were counted. The immune cell subsets and the levels of IL-4, INF-γ, perforin and granzyme in CD8+T cells by the flow cytometry were measured. The proliferation activity and the inhibition ratio of immune cells to several tumor cell lines were evaluated by MTT assay. Results The absolute amounts and subsets of T, B, NK cells of advanced lung cancer patients were lower than the healthy individuals (P < 0.05); However, the proportion of regulatory T cells of advanced lung cancer patients (4.00±1.84)% was lower than the healthy individuals (1.27±0.78)% (P < 0.05). The positive rates of IFN-γ perforin, granzyme in CD8+T cells decreased while them in IL-4 did not in the advanced lung cancer patients compared to the healthy control group (P < 0.05). The proliferation activity of immune cells, the positive rate of PPD masculine and the inhibition ratio to tumor cells in the advanced lung cancer patients was lower than the healthy subsets obviously (P < 0.05). Conclusion There was a significant immune depression in the advanced lung cancer patients compared to the healthy individuals

    Development of a multi-layer network model for characterizing energy cascade behavior on turbulent mixing

    Get PDF
    Eddies of various sizes are visible to the naked eye in turbulent flow. Each eddy scale corresponds to a fraction of the total energy released by the turbulence cascade. Understanding the dynamic mechanism of the energy cascade is crucial to the study of turbulent mixing. In this paper, an energy cascade multi-layer network (ECMN) based on the complex network algorithm is proposed to investigate the spatio-temporal evolution of the energy cascade, covering both the inertial and dispersive ranges. The dynamic process of energy cascade is transformed into a topological structure based on the node definition and edge determination. The topological structure allows for the exploration of eddies interaction and chaotic energy transfer across scales. The model results show the intermittent and non-uniform nature of the energy cascade. Meanwhile, the scale gap found in the model verifies the fractal property of the energy evolution. We also found that scales of the generated eddies in energy cascade process are stochastic, and a synchronous energy cascade pattern is demonstrated according to the constructed framework. Furthermore, it provides a topological way to evaluate the contribution of large and small scale eddies. In addition, a network structure coefficient Îş is proposed to evaluate the energy transfer strength. It agrees very well with the fluctuation of dissipation rates. All of this shows that the network model can effectively reveal the inhomogeneous properties of the energy cascade and quantify the turbulent mixing intensity based on the intermittent scale interaction. This also provides new insights into the study of fractal scales of nonlinear complex systems and the bridging of chaotic dynamics with topological frameworks

    Mendelian randomization analysis identified tumor necrosis factor as being associated with severe COVID-19

    Get PDF
    Background: Observational studies have shown that anti-tumor necrosis factor (TNF) therapy may be beneficial for patients with coronavirus disease 2019 (COVID-19). Nevertheless, because of the methodological restrictions of traditional observational studies, it is a challenge to make causal inferences. This study involved a two-sample Mendelian randomization analysis to investigate the causal link between nine TNFs and COVID-19 severity using publicly released genome-wide association study summary statistics.Methods: Summary statistics for nine TNFs (21,758 cases) were obtained from a large-scale genome-wide association study. Correlation data between single-nucleotide polymorphisms and severe COVID-19 (18,152 cases vs. 1,145,546 controls) were collected from the COVID-19 host genetics initiative. The causal estimate was calculated by inverse variance-weighted (IVW), MR–Egger, and weighted median methods. Sensitivity tests were conducted to assess the validity of the causal relationship.Results: Genetically predicted TNF receptor superfamily member 6 (FAS) positively correlated with the severity of COVID-19 (IVW, odds ratio = 1.10, 95% confidence interval = 1.01–1.19, p = 0.026), whereas TNF receptor superfamily member 5 (CD40) was protective against severe COVID-19 (IVW, odds ratio = 0.92, 95% confidence interval = 0.87–0.97, p = 0.002).Conclusion: Genetic evidence from this study supports that the increased expression of FAS is associated with the risk of severe COVID-19 and that CD40 may have a potential protective effect against COVID-19

    Analysis of Circulating Tumor Cells in Ovarian Cancer and Their Clinical Value as a Biomarker

    Get PDF
    Background/Aims: Monitoring the appearance and progression of tumors are important for improving the survival rate of patients with ovarian cancer. This study aims to examine circulating tumor cells (CTCs) in epithelial ovarian cancer (EOC) patients to evaluate their clinical significance in comparison to the existing biomarker CA125. Methods: Immuomagnetic bead screening, targeting epithelial antigens on ovarian cancer cells, combined with multiplex reverse transcriptase-polymerase chain reaction (Multiplex RT-PCR) was used to detect CTCs in 211 samples of peripheral blood (5 ml) from 109 EOC patients. CTCs and CA125 were measured in serial from 153 blood and 153 serum samples from 51 patients and correlations with treatment were analyzed. Immunohistochemistry was used to detect the expression of tumor-associated proteins in tumor tissues and compared with gene expression in CTCs from patients. Results: CTCs were detected in 90% (98/109) of newly diagnosed patients. In newly diagnosed patients, the number of CTCs was correlated with stage (p=0.034). Patients with stage IA-IB disease had a CTC positive rate of 93% (13/14), much higher than the CA125 positive rate of only 64% (9/14) for the same patients. The numbers of CTCs changed with treatment, and the expression of EpCAM (p=0.003) and HER2 (p=0.035) in CTCs was correlated with resistance to chemotherapy. Expression of EpCAM in CTCs before treatment was also correlated with overall survival (OS) (p=0.041). Conclusion: Detection of CTCs allows early diagnose and expression of EpCAM in CTC positive patients predicts prognosis and should be helpful for monitoring treatment
    • …
    corecore