259 research outputs found

    YOLOv8-Peas: a lightweight drought tolerance method for peas based on seed germination vigor

    Get PDF
    IntroductionDrought stress has become an important factor affecting global food production. Screening and breeding new varieties of peas (Pisum sativum L.) for drought-tolerant is of critical importance to ensure sustainable agricultural production and global food security. Germination rate and germination index are important indicators of seed germination vigor, and the level of germination vigor of pea seeds directly affects their yield and quality. The traditional manual germination detection can hardly meet the demand of full-time sequence nondestructive detection. We propose YOLOv8-Peas, an improved YOLOv8-n based method for the detection of pea germination vigor.MethodsWe constructed a pea germination dataset and used multiple data augmentation methods to improve the robustness of the model in real-world scenarios. By introducing the C2f-Ghost structure and depth-separable convolution, the model computational complexity is reduced and the model size is compressed. In addition, the original detector head is replaced by the self-designed PDetect detector head, which significantly improves the computational efficiency of the model. The Coordinate Attention (CA) mechanism is added to the backbone network to enhance the model's ability to localize and extract features from critical regions. The neck used a lightweight Content-Aware ReAssembly of FEatures (CARAFE) upsampling operator to capture and retain detailed features at low levels. The Adam optimizer is used to improve the model's learning ability in complex parameter spaces, thus improving the model's detection performance.ResultsThe experimental results showed that the Params, FLOPs, and Weight Size of YOLOv8-Peas were 1.17M, 3.2G, and 2.7MB, respectively, which decreased by 61.2%, 61%, and 56.5% compared with the original YOLOv8-n. The mAP of YOLOv8-Peas was on par with that of YOLOv8-n, reaching 98.7%, and achieved a detection speed of 116.2FPS. We used PEG6000 to simulate different drought environments and YOLOv8-Peas to analyze and quantify the germination vigor of different genotypes of peas, and screened for the best drought-resistant pea varieties.DiscussionOur model effectively reduces deployment costs, improves detection efficiency, and provides a scientific theoretical basis for drought-resistant genotype screening in pea

    The triggering process of an X-class solar flare on a small quadrupolar active region

    Full text link
    The occurrence of X-class solar flares and their potential impact on the space weather often receive great attention than other flares. But predicting when and where an X-class flare will occur is still a challenge. With the multi-wavelength observation from the Solar Dynamics Observatory and FengYun- 3E satellite, we investigate the triggering of a GOES X1.0 flare occurring in the NOAA active region (AR) 12887. Our results show that this unique X-class flare is bred in a relatively small but complex quadrupolar AR. Before the X-class flare, two filaments (F1 and F2) exist below a null-point topology of the quadrupolar AR. Magnetic field extrapolation and observation reveal that F1 and F2 correspond to two magnetic flux ropes with the same chirality and their adjacent feet rooted at nonconjugated opposite polarities, respectively. Interestingly, these two polarities collide rapidly, accompanied by photospheric magnetic flux emergence, cancellation and shear motion in the AR center. Above this site, F1 and F2 subsequently intersect and merge to a longer filament (F3) via a tether-cutting-like reconnection process. As a result, the F3 rises and erupts, involving the large-scale arcades overlying filament and the quadrupolar magnetic field above the AR, and eventually leads to the eruption of the X-class flare with a quasi-X-shaped flare ribbon and a coronal mass ejection. It suggests that the rapid collision of nonconjugated opposite polarities provides a key condition for the triggering of this X-class flare, and also provides a featured case for flare trigger mechanism and space weather forecasting.Comment: 24 pages, 7 figures, accepted for publication in Ap

    Inhibition of MicroRNA-124 Reduces Cardiomyocyte Apoptosis Following Myocardial Infarction via Targeting STAT3

    Get PDF
    Background/Aims: MicroRNAs play an important role in regulating myocardial infarction (MI)-induced cardiac injury. MicroRNA-124 (miR-124) plays a vital role in regulating cellular proliferation, differentiation and apoptosis. Although the alteration of miR-124 was confirmed in peripheral blood of MI patients, little is known regarding the biological functions of miR-124 in cardiomyocytes. This study was designed to explore the role of miR-124 in MI and its underlying mechanisms. Methods: Real-time PCR was used to quantify the microRNAs levels. TUNEL and Flow cytometry were performed to measure cell apoptosis. Western blot analysis was employed to detect expression of Bcl-2, Bax, Caspase-3 and STAT3 proteins. Results: We revealed that miR-124 was significantly up-regulated in a mice model of MI and in neonatal rat ventricular myocytes (NRVMs) with H2O2 treatment. H2O2 treatment induced cardiomyocyte injury with reduced cell viability and enhanced apoptotic cell death, whereas silencing expression of miR-124 by AMO-124 (antisense inhibitor oligodeoxyribonucleotides) alleviated these deleterious changes. AMO-124 decreased the expression of Bax and cleaved-caspase-3 and upregulated the expression of Bcl-2 in H2O2-treated NRVMs. Besides, AMO-124 improved mitochondrial dysfunction of NRVMs induced by H2O2 treatment. Moreover, antagomir-124 markedly decreased the infarct area and apoptotic cardiomyocytes and improved cardiac function in MI mice. Furthermore, we identified STAT3 as a direct target of miR-124, and downregulation of miR-124 ameliorated the diminished levels of STAT3 and p-STAT3 (Tyr705) in response to H2O2 or MI. STAT3 inhibitor, stattic, was shown to attenuate the elevation of p-STAT3 in NRVMs with AMO-124 transfection. Inhibiting of STAT3 activity by stattic abrogated protective effects of AMO-124 on H2O2-induced cardiomyocytes apoptosis. Conclusion: Taken together, our data demonstrate that downregulation of miR-124 inhibits MI-induced apoptosis through upregulating STAT3, which suggests the therapeutic potential of miR-124 for myocardial infarction

    Prenatal Diagnosis of Recurrent Distal 1q21.1 Duplication in Three Fetuses With Ultrasound Anomalies

    Get PDF
    Background: The phenotype of duplication of 1q21.1 region is variable, ranging from macrocephaly, autism spectrum disorder, congenital anomalies, to a normal phenotype. Few cases have been reported in the literature regarding prenatal diagnosis of 1q21.1 duplication syndrome. The current study presents prenatal diagnosis of 1q21.1 duplication syndrome in three fetuses with ultrasound anomalies.Case presentation: Three fetuses from three unrelated families were included in the study. The prenatal routine ultrasound examination showed nasal bone loss in Fetus 1 and Fetus 3, as well as duodenal atresia in Fetus 2. Chromosomal microarray analysis was performed to provide genetic analysis of amniotic fluid and parental blood samples. The CMA results revealed two de novo duplications of 1.34 and 2.69 Mb at distal 1q21.1 region in two fetuses with absent nasal bone, as well as a maternal inherited 1.35-Mb duplication at distal 1q21.1 in one fetus with duodenal atresia.Conclusions: The phenotype of 1q21.1 duplication syndrome in prenatal diagnosis is variable. The fetuses with nasal bone loss or duodenal atresia may be related to 1q21.1 duplication and chromosomal microarray analysis should be performed

    Novel Y-chromosomal microdeletions associated with non-obstructive azoospermia uncovered by high throughput sequencing of sequence-tagged sites (STSs)

    Get PDF
    Y-chromosomal microdeletion (YCM) serves as an important genetic factor in non-obstructive azoospermia (NOA). Multiplex polymerase chain reaction (PCR) is routinely used to detect YCMs by tracing sequence-tagged sites (STSs) in the Y chromosome. Here we introduce a novel methodology in which we sequence 1,787 (post-filtering) STSs distributed across the entire male-specific Y chromosome (MSY) in parallel to uncover known and novel YCMs. We validated this approach with 766 Chinese men with NOA and 683 ethnically matched healthy individuals and detected 481 and 98 STSs that were deleted in the NOA and control group, representing a substantial portion of novel YCMs which significantly influenced the functions of spermatogenic genes. The NOA patients tended to carry more and rarer deletions that were enriched in nearby intragenic regions. Haplogroup O2* was revealed to be a protective lineage for NOA, in which the enrichment of b1/b3 deletion in haplogroup C was also observed. In summary, our work provides a new high-resolution portrait of deletions in the Y chromosome.National Key Scientific Program of China [2011CB944303]; National Nature Science Foundation of China [31271244, 31471344]; Promotion Program for Shenzhen Key Laboratory [CXB201104220045A]; Shenzhen Project of Science and Technology [JCYJ20130402113131202, JCYJ20140415162543017]SCI(E)[email protected]; [email protected]; [email protected]

    Structure and Evolution of Glycogen Branching Enzyme N-Termini From Bacteria

    Get PDF
    In bacteria, glycogen plays important roles in carbon and energy storage. Its structure has recently been linked with bacterial environmental durability. Among the essential genes for bacterial glycogen metabolism, the glgB-encoded branching enzyme GBE plays an essential role in forming α-1,6-glycosidic branching points, and determines the unique branching patterns in glycogen. Previously, evolutionary analysis of a small sets of GBEs based on their N-terminal domain organization revealed that two types of GBEs might exist: (1) Type 1 GBE with both N1 and N2 (also known as CBM48) domains and (2) Type 2 GBE with only the N2 domain. In this study, we initially analyzed N-terminal domains of 169 manually reviewed bacterial GBEs based on hidden Markov models. A previously unreported group of GBEs (Type 3) with around 100 amino acids ahead of the N1 domains was identified. Phylogenetic analysis found clustered patterns of GBE types in certain bacterial phyla, with the shorter, Type 2 GBEs predominantly found in Gram-positive species, while the longer Type 1 GBEs are found in Gram-negative species. Several in vitro studies have linked N1 domain with transfer of short oligosaccharide chains during glycogen formation, which could lead to small and compact glycogen structures. Compact glycogen degrades more slowly and, as a result, may serve as a durable energy reserve, contributing to the enhanced environmental persistence for bacteria. We were therefore interested in classifying GBEs based on their N-terminal domain via large-scale sequence analysis. In addition, we set to understand the evolutionary patterns of different GBEs through phylogenetic analysis at species and sequence levels. Three-dimensional modeling of GBE N-termini was also performed for structural comparisons. A further study of 9,387 GBE sequences identified 147 GBEs that might belong to a possibly novel group of Type 3 GBE, most of which fall into the phylum of Actinobacteria. We also attempted to correlate glycogen average chain length (ACL) with GBE types. However, no significant conclusions were drawn due to limited data availability. In sum, our study systematically investigated bacterial GBEs in terms of domain organizations from evolutionary point of view, which provides guidance for further experimental study of GBE N-terminal functions in glycogen structure and bacterial physiology
    corecore