27 research outputs found
Biphasic activation of PI3K/Akt and MAPK/Erk1/2 signaling pathways in bovine herpesvirus type 1 infection of MDBK cells
Many viruses have been known to control key cellular signaling pathways to facilitate the virus infection. The possible involvement of signaling pathways in bovine herpesvirus type 1 (BoHV-1) infection is unknown. This study indicated that infection of MDBK cells with BoHV-1 induced an early-stage transient and a late-stage sustained activation of both phosphatidylinositol 3-kinase (PI3K)/Akt and mitogen activated protein kinases/extracellular signal-regulated kinase 1/2 (MAPK/Erk1/2) signaling pathways. Analysis with the stimulation of UV-irradiated virus indicated that the virus binding and/or entry process was enough to trigger the early phase activations, while the late phase activations were viral protein expression dependent. Biphasic activation of both pathways was suppressed by the selective inhibitor, Ly294002 for PI3K and U0126 for MAPK kinase (MEK1/2), respectively. Furthermore, treatment of MDBK cells with Ly294002 caused a 1.5-log reduction in virus titer, while U0126 had little effect on the virus production. In addition, the inhibition effect of Ly294002 mainly occurred at the post-entry stage of the virus replication cycle. This revealed for the first time that BoHV-1 actively induced both PI3K/Akt and MAPK/Erk1/2 signaling pathways, and the activation of PI3K was important for fully efficient replication, especially for the post-entry stage
Can Sophie's Choice Be Adequately Captured by Cold Computation of Minimizing Losses? An fMRI Study of Vital Loss Decisions
The vast majority of decision-making research is performed under the assumption of the value maximizing principle. This principle implies that when making decisions, individuals try to optimize outcomes on the basis of cold mathematical equations. However, decisions are emotion-laden rather than cool and analytic when they tap into life-threatening considerations. Using functional magnetic resonance imaging (fMRI), this study investigated the neural mechanisms underlying vital loss decisions. Participants were asked to make a forced choice between two losses across three conditions: both losses are trivial (trivial-trivial), both losses are vital (vital-vital), or one loss is trivial and the other is vital (vital-trivial). Our results revealed that the amygdala was more active and correlated positively with self-reported negative emotion associated with choice during vital-vital loss decisions, when compared to trivial-trivial loss decisions. The rostral anterior cingulate cortex was also more active and correlated positively with self-reported difficulty of choice during vital-vital loss decisions. Compared to the activity observed during trivial-trivial loss decisions, the orbitofrontal cortex and ventral striatum were more active and correlated positively with self-reported positive emotion of choice during vital-trivial loss decisions. Our findings suggest that vital loss decisions involve emotions and cannot be adequately captured by cold computation of minimizing losses. This research will shed light on how people make vital loss decisions
Conservative Continuous-Stage Stochastic RungeāKutta Methods for Stochastic Differential Equations
In this paper, we develop a new class of conservative continuous-stage stochastic RungeāKutta methods for solving stochastic differential equations with a conserved quantity. The order conditions of the continuous-stage stochastic RungeāKutta methods are given based on the theory of stochastic B-series and multicolored rooted tree. Sufficient conditions for the continuous-stage stochastic RungeāKutta methods preserving the conserved quantity of stochastic differential equations are derived in terms of the coefficients. Conservative continuous-stage stochastic RungeāKutta methods of mean square convergence order 1 for general stochastic differential equations, as well as conservative continuous-stage stochastic RungeāKutta methods of high order for single integrand stochastic differential equations, are constructed. Numerical experiments are performed to verify the conservative property and the accuracy of the proposed methods in the longtime simulation
DNA Damage Response Differentially Affects BoHV-1 Gene Transcription in Cell Type-Dependent Manners
Bovine herpesvirus 1 (BoHV-1), an important pathogen of cattle, is also a promising oncolytic virus. Recent studies have demonstrated that the virus infection induces DNA damage and DNA damage response (DDR), potentially accounting for virus infection-induced cell death and oncolytic effects. However, whether the global DDR network affects BoHV-1 productive infection remains to be elucidated. In this study, we show that global DDR induced by ultraviolet (UV) irradiation prior to BoHV-1 infection differentially affected transcription of immediate early (IE) genes, such as infected cell protein 0 (bICP0) and bICP22, in a cell-type-dependent manner. In addition, UV-induced DDR may affect the stabilization of viral protein levels, such as glycoprotein C (gC) and gD, because the variation in mRNA levels of gC and gD as a consequence of UV treatment were not in line with the variation in individual protein levels. The virus productive infection also affects UV-primed DDR signaling, as demonstrated by the alteration of phosphorylated histone H2AX (Ī³H2AX) protein levels and Ī³H2AX formation following virus infection. Taken together, for the first time, we evidenced the interplay between UV-primed global DDR and BoHV-1 productive infection. UV-primed global DDR differentially modulates the transcription of virus genes and stabilization of virus protein. Vice versa, the virus infection may affect UV-primed DDR signaling
Oncolytic Bovine Herpesvirus 1 Inhibits Human Lung Adenocarcinoma A549 Cell Proliferation and Tumor Growth by Inducing DNA Damage
Bovine herpesvirus 1 (BoHV-1) is a promising oncolytic virus with broad antitumor spectrum; however, its oncolytic effects on human lung adenocarcinoma in vivo have not been reported. In this study, we report that BoHV-1 can be used as an oncolytic virus for human lung adenocarcinoma, and elucidate the underlying mechanism of how BoHV-1 suppresses tumor cell proliferation and growth. First, we examined the oncolytic activities of BoHV-1 in human lung adenocarcinoma A549 cells. BoHV-1 infection reduced the protein levels of histone deacetylases (HDACs), including HDAC1-4 that are promising anti-tumor drug targets. Furthermore, the HDAC inhibitor Trichostatin A (TSA) promoted BoHV-1 infection and exacerbated DNA damage and cytopathology, suggesting a synergy between BoHV-1 and TSA. In the A549 tumor xenograft mouse model, we, for the first time, showed that BoHV-1 can infect tumor and suppressed tumor growth with a similar high efficacy as the treatment of TSA, and HDACs have potential effects on the virus replication. Taken together, our study demonstrates that BoHV-1 has oncolytic effects against human lung adenocarcinoma in vivo
The role of phospholipase C signaling in bovine herpesvirus 1 infection
International audienceAbstractBovine herpesvirus 1 (BoHV-1) infection enhanced the generation of inflammatory mediator reactive oxidative species (ROS) and stimulated MAPK signaling that are highly possibly related to virus induced inflammation. In this study, for the first time we show that BoHV-1 infection manipulated phospholipase C (PLC) signaling, as demonstrated by the activation of PLCĪ³-1 at both early stages [at 0.5Ā h post-infection (hpi)] and late stages (4ā12Ā hpi) during the virus infection of MDBK cells. Viral entry, and de novo protein expression and/or DNA replication were potentially responsible for the activation of PLCĪ³-1 signaling. PLC signaling inhibitors of both U73122 and edelfosine significantly inhibited BoHV-1 replication in both bovine kidney cells (MDBK) and rabbit skin cells (RS-1) in a dose-dependent manner by affecting the virus entry stage(s). In addition, the activation of Erk1/2 and p38MAPK signaling, and the enhanced generation of ROS by BoHV-1 infection were obviously ameliorated by chemical inhibition of PLC signaling, implying the requirement of PLC signaling in ROS production and these MAPK pathway activation. These results suggest that the activation of PLC signaling is a potential pathogenic mechanism for BoHV-1 infection
Ī²-Catenin-Specific Inhibitor, iCRT14, Promotes BoHV-1 Infection-Induced DNA Damage in Human A549 Lung Adenocarcinoma Cells by Enhancing Viral Protein Expression
Oncolytic bovine herpesvirus type 1 (BoHV-1) infection induces DNA damage in human lung adenocarcinoma cell line A549. However, the underlying mechanisms are not fully understood. We found that BoHV-1 infection decreased the steady-state protein levels of p53-binding protein 1 (53BP1), which plays a central role in dictating DNA damage repair and maintaining genomic stability. Furthermore, BoHV-1 impaired the formation of 53BP1 foci, suggesting that BoHV-1 inhibits 53BP1-mediated DNA damage repair. Interestingly, BoHV-1 infection redistributed intracellular Ī²-catenin, and iCRT14 (5-[[2,5-Dimethyl-1-(3-pyridinyl)-1H-pyrrol-3-yl]methylene]-3-phenyl-2,4-thiazolidinedione), a Ī²-catenin-specific inhibitor, enhanced certain viral protein expression, such as the envelope glycoproteins gC and gD, and enhanced virus infection-induced DNA damage. Therefore, for the first time, we provide evidence showing that BoHV-1 infection disrupts 53BP1-mediated DNA damage repair and suggest Ī²-catenin as a potential host factor restricting both virus replication and DNA damage in A549 cells