2,317 research outputs found

    Electron self-energy and effective mass in a single heterostructure

    Full text link
    In this paper, we investigate the electron self-energy and effective mass in a single heterostructure using Green-function method. Numerical calculations of the electron self-energy and effective mass for GaAs/AlAs heterostructure are performed. The results show that the self energy (effective mass) of electron, which incorporate the energy of electron coupling to interface-optical phonons and half three-dimension LO phonons, monotonically increase(decrease) from that of interface polaron to that of 3D bulk polaron with the increase of the distance between the position of the electron and interface.Comment: 10 pages, 2 figure

    Spin alignment of vector meson in e+e- annihilation at Z0 pole

    Full text link
    We calculate the spin density matrix of the vector meson produced in e+e- annihilation at Z^0 pole. We show that the data imply a significant polarization for the antiquark which is created in the fragmentation process of the polarized initial quark and combines with the fragmenting quark to form the vector meson. The direction of polarization is opposite to that of the fragmenting quark and the magnitude is of the order of 0.5. A qualitative explanation of this result based on the LUND string fragmentation model is given.Comment: 15 pages, 2 fgiures; submitted to Phys. Rev.

    Spin Alignment of Vector Meson in High Energy Reactions

    Full text link
    The recent data on the polarization of vector meson at LEP show that the vector mesons favor the helicity zero state. We calculate the helicity density matrix of vector meson which contains a polarized fragmenting quark by adding the spin of the fragmenting quark and that of the antiquark created in the fragmentation. The data at LEP imply a significant polarization for the antiquark in the opposite direction as that of the fragmenting quark. We extend the calculations to other reactions and make predictions for vector mesons in deeply inelastic lepton-nucleon scatterings and polarized pppp collisions.Comment: 4 pages,3 figures, Talk given at 3rd Circum-Pan-Pacific Symposium on "High Energy Spin Physics", Beijing, China, Oct.8-13, 200

    Trees with the most subtrees -- an algorithmic approach

    Full text link
    When considering the number of subtrees of trees, the extremal structures which maximize this number among binary trees and trees with a given maximum degree lead to some interesting facts that correlate to other graphical indices in applications. The number of subtrees in the extremal cases constitute sequences which are of interest to number theorists. The structures which maximize or minimize the number of subtrees among general trees, binary trees and trees with a given maximum degree have been identified previously. Most recently, results of this nature are generalized to trees with a given degree sequence. In this note, we characterize the trees which maximize the number of subtrees among trees of a given order and degree sequence. Instead of using theoretical arguments, we take an algorithmic approach that explicitly describes the process of achieving an extremal tree from any random tree. The result also leads to some interesting questions and provides insight on finding the trees close to extremal and their numbers of subtrees.Comment: 12 pages, 7 figures; Journal of combinatorics, 201
    • …
    corecore