14 research outputs found

    Spatial and temporal evolution and driving factors of county solid waste harmless disposal capacity in China

    Get PDF
    Currently, China mainly adopts the waste treatment model of “household sorting, village collection, town transfer and county disposal.” Determining the spatial and temporal distribution of China’s county solid waste harmless disposal capacity and formulating strategies according to local conditions are of great significance in promoting the construction of beautiful villages in China and realizing the Beautiful China strategy. This paper explores the spatial and temporal evolution characteristics of county solid waste harmless disposal capacity by selecting relevant data from 27 provinces in China from 2006 to 2020, and adopts the Dagum Gini coefficient method to measure the spatial gap of it. In addition, this paper empirically analyses the drivers affecting county solid waste harmless disposal capacity using the spatial Durbin model (SDM). The main conclusions are as follows: 1) In terms of time, county solid waste harmless disposal capacity in China as a whole shows a year-by-year increasing trend, especially after 2018 when the growth rate is faster. 2) In terms of spatial patterns, the solid waste harmless disposal capacity of coastal areas is generally higher than that of inland areas, and the distribution of provinces with low and middle levels of solid waste harmless disposal capacity is characterized by concentrated contiguity. From the perspective of spatial agglomeration, the characteristics of spatial agglomeration in the north are gradually becoming more pronounced, while those in the south are not significant. From the trajectory of the evolution of the spatial center of gravity, the center of gravity of county solid waste harmless disposal capacity as a whole shows a northeast, then northwest, then northeast movement, and the speed of “northward expansion” is greater than the speed of “eastward expansion”. 3) The results of the Dagum Gini coefficient and its decomposition show that the northeast has the smallest average annual rate of change in the Gini coefficient. The reduction of the within-group gap is an important driver towards equilibrium. The contribution of hypervariable density is decreasing year by year. 4) The number of harmless disposal plants, GDP per person, population urbanization, the number of township waste transfer stations and county waste disposal fixed asset investment are important drivers of county waste harmless disposal capacity. Findings provide helpful insights into optimizing rural habitat and promoting the comprehensive transformation of China’s county development

    Trace Metal Distribution in Sulfide Minerals from Ultramafic-Hosted Hydrothermal Systems: Examples from the Kairei Vent Field, Central Indian Ridge

    Get PDF
    The ultramafic-hosted Kairei vent field is located at 25°19′ S, 70°02′ E, towards the Northern end of segment 1 of the Central Indian Ridge (CIR-S1) at a water depth of ~2450 m. This study aims to investigate the distribution of trace elements among sulfide minerals of differing textures and to examine the possible factors controlling the trace element distribution in those minerals using LA-ICP-MS spot and line scan analyses. Our results show that there are distinct systematic differences in trace element distributions throughout the different minerals, as follows: (1) pyrite is divided into three types at Kairei, including early-stage euhedral pyrite (py-I), sub-euhedral pyrite (py-II), and colloform pyrite (py-III). Pyrite is generally enriched with Mo, Au, As, Tl, Mn, and U. Pyrite-I has high contents of Se, Te, Bi, and Ni when compared to the other types; py-II is enriched in Au relative to py-I and py-III, but poor in Ni; py-III is enriched in Mo, Pb, and U but is poor in Se, Te, Bi, and Au relative to py-I and py-II. Variations in the concentrations of Se, Te, and Bi in pyrite are most likely governed by the strong temperature gradient. There is generally a lower concentration of nickel than Co in pyrite, indicating that our samples precipitated at high temperatures, whereas the extreme Co enrichment is likely from a magmatic heat source combined with an influence of serpentinization reactions. (2) Chalcopyrite is characterized by high concentrations of Co, Se, and Te. The abundance of Se and Te in chalcopyrite over the other minerals is interpreted to have been caused by the high solubilities of Se and Te in the chalcopyrite lattice at high temperatures. The concentrations of Sb, As, and Au are relatively low in chalcopyrite from the Kairei vent field. (3) Sphalerite from Zn-rich chimneys is characterized by high concentrations of Sn, Co, Ga, Ge, Ag, Pb, Sb, As, and Cd, but is depleted in Se, Te, Bi, Mo, Au, Ni, Tl, Mn, Ba, V, and U in comparison with the other minerals. The high concentrations of Cd and Co are likely caused by the substitution of Cd2+ and Co2+ for Zn2+ in sphalerite. A high concentration of Pb accompanied by a high Ag concentration in sphalerite indicates that Ag occurs as Pb–Ag sulfosalts. Gold is generally low in sphalerite and strongly correlates with Pb, suggesting its presence in microinclusions of galena. The strong correlation of As with Ge in sphalerite from Kairei suggests that they might precipitate at medium temperatures and under moderately reduced conditions. (4) Bornite–digenite has very low concentrations of most trace elements, except for Co, Se, and Bi. Serpentinization in ultramafic-hosted hydrothermal systems might play an important role in Au enrichment in pyrite with low As contents. Compared to felsic-hosted seafloor massive sulfide deposits, sulfide minerals from ultramafic-hosted deposits show higher concentrations of Se and Te, but lower As, Sb, and Au concentrations, the latter often attributed to the contribution of magmatic volatiles. As with typical ultramafic-hosted seafloor massive sulfide deposits, Se enrichment in chalcopyrite from Kairei indicates that the primary factor that controls the Se enrichment is temperature-controlled mobility in vent fluids

    Mineralogical and geochemical features of sulfide chimneys from the 49°39′E hydrothermal field on the Southwest Indian Ridge and their geological inferences

    Get PDF
    © The Author(s), 2011. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Chinese Science Bulletin 56 (2011): 2828-2838, doi:10.1007/s11434-011-4619-4.During January–May in 2007, the Chinese research cruise DY115-19 discovered an active hydrothermal field at 49°39′E/37°47′S on the ultraslow spreading Southwest Indian Ridge (SWIR). This was also the first active hydrothermal field found along an ultraslow-spreading ridge. We analyzed mineralogical, textural and geochemical compositions of the sulfide chimneys obtained from the 49°39′E field. Chimney samples show a concentric mineral zone around the fluid channel. The mineral assemblages of the interiors consist mainly of chalcopyrite, with pyrite and sphalerite as minor constitunets. In the intermediate portion, pyrite becomes the dominant mineral, with chalcopyrite and sphalerite as minor constitunets. For the outer wall, the majority of minerals are pyrite and sphalerite, with few chalcopyrite. Towards the outer margin of the chimney wall, the mineral grains become small and irregular in shape gradually, while minerals within interstices are abundant. These features are similar to those chimney edifices found on the East Pacific Rise and Mid-Atlantic Ridge. The average contents of Cu, Fe and Zn in our chimney samples were 2.83 wt%, 45.6 wt% and 3.28 wt%, respectively. The average Au and Ag contents were up to 2.0 ppm and 70.2 ppm respectively, higher than the massive sulfides from most hydrothermal fields along mid-ocean ridge. The rare earth elements geochemistry of the sulfide chimneys show a pattern distinctive from the sulfides recovered from typical hydrothermal fields along sediment-starved mid-ocean ridge, with the enrichment of light rare earth elements but the weak, mostly negative, Eu anomaly. This is attributed to the distinct mineralization environment or fluid compositions in this area.This work was supported by the China Ocean Mineral Resources Research and Development Association Program (DY115- 02-1-01) and the State Oceanic Administration Youth Science Fund (2010318)

    Emodin attenuates high lipid-induced liver metastasis through the AKT and ERK pathways in vitro in breast cancer cells and in a mouse xenograft model

    No full text
    Emodin, a natural anthraquinone derivative, can inhibit lipid synthesis and breast cancer cell proliferation. We previously found that emodin decreased breast cancer liver metastasis via epithelial-to-mesenchymal transition (EMT) inhibition. However, the mechanism through which emodin affects breast cancer liver metastasis in high-fat diet-induced obese and hyperlipidemic mice has not been elucidated. Bioinformatics analysis was used to reveal the potential targets and pathways of emodin. The mouse model of liver metastasis was established by injecting breast cancer cells into the left ventricle in high-fat diet-induced obese mice. The effect of emodin on inhibiting liver metastasis of breast cancer was evaluated by animal experiments. The mechanisms through which emodin inhibits liver metastasis of breast cancer were studied by cell and molecular biological methods. Emodin reduced lipid synthesis by inhibiting the expression of triglyceride (TG) synthesis-related genes, such as fatty acid synthase (Fasn), glycerol-3-phosphate acyltransferase 1 (Gpat1), and stearoyl-CoA desaturase (Scd1), and ultimately reduced liver metastasis in breast cancer. In addition, emodin inhibited breast cancer cell proliferation and invasion through the serine/threonine kinase (AKT) signaling and extracellular-regulated protein kinase (ERK) pathways by interacting with CSNK2A1, ESR1, ESR2, PIM1 and PTP4A3. Our results indicate that emodin may have therapeutic potential in the prevention or treatment of breast cancer liver metastasis

    Extracts of Zuo Jin Wan, a traditional Chinese medicine, phenocopies 5-HTR1D antagonist in attenuating Wnt/β-catenin signaling in colorectal cancer cells

    No full text
    Abstract Background In vitro and in vivo studies have shown that Zuo Jin Wan (ZJW), a herbal formula of traditional Chinese medicine (TCM), possessed anticancer properties. However, the underlying mechanism for the action of ZJW remains unclear. Various subtypes of 5-Hydroxytryptamine receptor (5-HTR) have been shown to play a role in carcinogenesis and cancer metastasis. 5-HTR1D, among the subtypes, is highly expressed in colorectal cancer (CRC) cell lines and tissues. The present study aimed at investigating effect of ZJW extracts on the biological function of CRC cells, the expression of 5-HTR1D, and molecules of Wnt/β-catenin signaling pathway. Methods In this study, the effect of ZJW extracts on 5-HTR1D expression and Wnt/β-catenin signaling pathway were investigated and contrasted with GR127935 (GR), a known 5-HTR1D antagonist, using the CRC cell line SW403. The cells were respectively treated with GR127935 and different doses of ZJW extracts. Proliferation, apoptosis, migration, and invasion of SW403 cells were compared between ZJW and GR127935 treatments. The expression of 5-HTR1D and signaling molecules involved in the canonic Wnt/β-catenin pathway were determined by Western blot analysis. Results After ZJW extracts treatment and GR127935 treatment, G1 arrest in cell cycle of SW403 was increased. Cell apoptosis was pronounced, and cell migration and invasion were suppressed. SW403 cells showed a dose-dependently decreased expression of 5-HTR1D, meanwhile, β-catenin level was significantly decreased in nucleus of cells cultured with GR127935. Treatment of ZJW extracts dose-dependently resulted in decreased 5-HTR1D and a concomitant reduction in the Wnt/β-catenin signal transduction, an effect indistinguishable from GR127935 treatment. Conclusion The anticancer activity of ZJW extracts may be partially achieved through attenuation of the 5-HTR1D-Wnt/β-catenin signaling pathway

    Investigation of the transport and absorption of Angelica sinensis polysaccharide through gastrointestinal tract both in vitro and in vivo

    No full text
    To investigate the absorption and delivery of ASP in gastrointestinal (GI) tract, cASP was successfully synthesized by chemically modifying with succinic anhydride and then conjugating with a near infrared fluorescent dye Cy5.5. Then, the capacity of oral absorption of cASP was evaluated. The results demonstrated that cASP had low toxicity and no disruption on the integrity of cell membrane. The endocytosis of cASP into the epithelial cells was time- and energy-dependent, which was mediated by macropinocytosis pathway and clathrin- and caveolae (or lipid raft)-related routes. Otherwise, the actin filaments played a relatively weak role at the same time. The transport study illustrated that cASP could penetrate through the epithelial monolayer and mainly mediated by the same routes as that in the endocytosis experiment. Moreover, both in vitro Ussing chamber and in vivo ligated intestinal loops models indicated that cASP could be diffused through the mucus barriers and be absorbed in the whole small intestine. Finally, near-infrared fluorescence imaging presented that cASP could be absorbed and circulated into the blood, then distributed into various organs after oral administration. In conclusion, ASP could be absorbed after oral administration through endocytosis process mainly mediated by macropinocytosis pathway and clathrin- and caveolae (or lipid raft)-related routes, then be absorbed and circulated into blood. This study presents a comprehensive understanding of oral delivery of cASP, which will provide theoretical basis for the clinical application of ASP

    5-hydroxytryptamine Receptor (5-HT\u3csub\u3e1D\u3c/sub\u3eR) Promotes Colorectal Cancer Metastasis by Regulating Axin1/β-catenin/MMP-7 Signaling Pathway

    No full text
    Overexpression of 5-hydroxytryptamine (5-HT) in human cancer contributes to tumor metastasis, but the role of 5-HT receptor family in cancer has not been thoroughly explored. Here, we report overexpression of 5-HT1D receptor (5-HT1DR) was associated with Wnt signaling pathway and advanced tumor stage. The underlying mechanism of 5-HT1DR-promoted tumor invasion was through its activation on the Axin1/β-catenin/MMP-7 pathway. In an orthotopic colorectal cancer mouse model, we demonstrated that a 5-HT1DR antagonist (GR127935) effectively inhibited tumor metastasis through targeting Axin1. Furthermore, in intestinal epithelium cells, we observed that 5-HT1DR played an important role in cell invasion via Axin1/β-catenin/MMP-7 pathway. Together, our findings reveal an essential role of the physiologic level of 5-HT1DR in pulmonary metastasis of colorectal cancer

    5-hydroxytryptamine Receptor (5-HT\u3csub\u3e1D\u3c/sub\u3eR) Promotes Colorectal Cancer Metastasis by Regulating Axin1/β-catenin/MMP-7 Signaling Pathway

    No full text
    Overexpression of 5-hydroxytryptamine (5-HT) in human cancer contributes to tumor metastasis, but the role of 5-HT receptor family in cancer has not been thoroughly explored. Here, we report overexpression of 5-HT1D receptor (5-HT1DR) was associated with Wnt signaling pathway and advanced tumor stage. The underlying mechanism of 5-HT1DR-promoted tumor invasion was through its activation on the Axin1/β-catenin/MMP-7 pathway. In an orthotopic colorectal cancer mouse model, we demonstrated that a 5-HT1DR antagonist (GR127935) effectively inhibited tumor metastasis through targeting Axin1. Furthermore, in intestinal epithelium cells, we observed that 5-HT1DR played an important role in cell invasion via Axin1/β-catenin/MMP-7 pathway. Together, our findings reveal an essential role of the physiologic level of 5-HT1DR in pulmonary metastasis of colorectal cancer

    Geochemistry of vent fluids from the Daxi Vent Field, Carlsberg Ridge, Indian Ocean: Constraints on subseafloor processes beneath a non-transform offset

    No full text
    Highlights • The hydrothermal fluids were sampled from a neovolcanic ridge within a non-transform offset. • Serpentinization has been involved on the pathway of hydrothermal circulation • The fluids are strongly affected by phase separation with extremely high Cl content in brine phase • A hybrid model of hydrothermal circulation controlled by tectonic and magmatic activities simultaneously was proposed. The Daxi Vent Field (DVF) is located on a neovolcanic ridge within a non-transform offset at water depths of ∼3500 m, on the Carlsberg Ridge, northwest Indian Ocean. In 2017, we investigated this site using the submersible Jiaolong and collected two fluid samples from orifices of chimneys named “Buddha's Hands” and “A1”, about 37 m apart. Their in-situ measured temperatures are 273 °C and 272 °C, respectively. The Buddha's Hands fluid is highly Cl-enriched (928 mM), while the A1 fluid is Cl-depleted (303 mM). This indicates that they have undergone phase separation. The segregated phases must have remixed during the ascent because the vapor and brine phases sampled cannot be produced by the same phase separation history without other processes. Olivine-rich and/or ultramafic mantle rocks must have been involved during the hydrothermal circulation as evidenced by high dissolved H2 (7.07 mM) and methane (0.884 mM) concentrations, a depletion in B relative to seawater, high Ca and low K, and large positive Eu anomalies. The Fe content in Buddha's Hands fluid is extremely high (11,900 μM) as a result of phase separation, while the Cu concentrations in both fluids are relatively low due to entrainment of seawater which results in precipitation of Cu-rich sulfides in the subseafloor. The concentrations of Zn, Ag, Ga, Sn, Sb, and Cd in A1 vent fluid are significantly elevated due to generation of acidity and remobilization of these elements as Cu-rich sulfides are deposited. The subseafloor processes and associated geochemistry of hydrothermal fluids at the DVF are distinct from other mid-ocean ridge hydrothermal systems due to the specific geologic setting. Hence a hybrid model of hydrothermal circulation is proposed. This study broadens our understanding of the hydrothermal processes occurring in areas of NTO setting and provides more information on mass fluxes discharging from hydrothermal systems and the formation of sulfide deposits

    The Daxi Vent Field: An active mafic-hosted hydrothermal system at a non-transform offset on the slow-spreading Carlsberg Ridge, 6°48′N

    No full text
    The distribution of hydrothermal vents and the biogeography of associated faunal communities in the Indian Ocean are still not well studied. This is especially true for Carlsberg Ridge, the northernmost part of the Indian Ocean spreading system. Here we report geological, morphological, biological, and hydrochemical data for the newly discovered Daxi Vent Field (DVF) on the slow-spreading Carlsberg Ridge at 6°48′N. The DVF is a basalt-hosted hydrothermal field situated atop a rifted volcanic ridge, located in a non-transform offset between two second-order ridge segments. There are three hydrothermal sites, i.e. Central mound, NE mound, and South mound. Eight vigorously venting black smokers were observed in the central hydrothermal mound. The largest sulfide chimney “Baochu Pagoda” is ~24 m tall. Another inactive chimney, which is silica-rich is observed in the NE mound. The sulfide chimneys are dominated by sphalerite and pyrrhotite containing high Sn, Co and Ag. The silica-rich chimney contains high SiO2 and Ba contents. Seven species of megafauna were identified, including alvinellid worms, which were collected in the Indian Ocean for the first time. Rimicaris kairei and actinostolid anemones dominate the community in the central areas and on the periphery of the vent field, respectively. The occurrence of DVF is quite unique as it is located on a non-transform offset and it is mafic-hosted. So far only nine hydrothermal fields with the similar geological setting have ever been reported among nearly 700 hydrothermal sites in the World’s Ocean. Graphical abstract The mafic-hosted Daxi Vent Field with high-temperature hydrothermal mineralization was discovered at a non-transform offset along the slow-spreading Carlsberg Ridge
    corecore