41 research outputs found

    Global Burden of Aortic Aneurysm and Attributable Risk Factors from 1990 to 2017

    Get PDF
    Background: To date, our understanding of the global aortic aneurysm (AA) burden distribution is very limited. Objective: To assess a full view of global AA burden distribution and attributable risk factors from 1990 to 2017. Methods: We extracted data of AA deaths, disability-adjusted life years (DALYs), and their corresponding age-standardized rates (ASRs), in general and by age/sex from the 2017 Global Burden of Disease (GBD) study. The current AA burden distribution in 2017 and its changing trend from 1990 to 2017 were separately showed. The spatial divergence was discussed from four levels: global, five social-demographic index regions, 21 GBD regions, and 195 countries and territories. We also estimated the risk factors attributable to AA related deaths. Results: Globally, the AA deaths were 167,249 with an age-standardized death rate (ASDR) of 2.19/100,000 persons in 2017, among which the elderly and the males accounted for the majority. Although reductions in ASRs were observed in developed areas, AA remained an important health issue in those relatively underdeveloped areas and might be much more important in the near future. AA may increasingly affect the elderly and the female population. Similar patterns of AA DALYs burden were noted during the study period. AA burden attributable to high blood pressure and smoking decreased globally and there were many heterogeneities in their distribution. Discussion: AA maintained an incremental public health issue worldwide. The change pattern of AA burden was heterogeneous across locations, ages, and sexes and it is paramount to improve resource allocation for more effective and targeted prevention strategies. Also, prevention of tobacco consumption and blood pressure control should be emphasized

    Targeting the autophagy-lysosome pathway in a pathophysiologically relevant murine model of reversible heart failure

    Get PDF
    The key biological drivers that are responsible for reverse left ventricle (LV) remodeling are not well understood. To gain an understanding of the role of the autophagy-lysosome pathway in reverse LV remodeling, we used a pathophysiologically relevant murine model of reversible heart failure, wherein pressure overload by transaortic constriction superimposed on acute coronary artery (myocardial infarction) ligation leads to a heart failure phenotype that is reversible by hemodynamic unloading. Here we show transaortic constriction + myocardial infarction leads to decreased flux through the autophagy-lysosome pathway with the accumulation of damaged proteins and organelles in cardiac myocytes, whereas hemodynamic unloading is associated with restoration of autophagic flux to normal levels with incomplete removal of damaged proteins and organelles in myocytes and reverse LV remodeling, suggesting that restoration of flux is insufficient to completely restore myocardial proteostasis. Enhancing autophagic flux with adeno-associated virus 9-transcription factor EB resulted in more favorable reverse LV remodeling in mice that had undergone hemodynamic unloading, whereas overexpressing transcription factor EB in mice that have not undergone hemodynamic unloading leads to increased mortality, suggesting that the therapeutic outcomes of enhancing autophagic flux will depend on the conditions in which flux is being studied

    Uric acid predicts recovery of left ventricular function and adverse events in heart failure with reduced ejection fraction: Potential mechanistic insight from network analyses

    Get PDF
    Background and Aims: Heart failure with reduced ejection fraction (HFrEF) still carries a high risk for a sustained decrease in left ventricular ejection fraction (LVEF) even with the optimal medical therapy. Currently, there is no effective tool to stratify these patients according to their recovery potential. We tested the hypothesis that uric acid (UA) could predict recovery of LVEF and prognosis of HFrEF patients and attempted to explore mechanistic relationship between hyperuricemia and HFrEF. Methods: HFrEF patients with hyperuricemia were selected from the National Inpatient Sample (NIS) 2016-2018 database and our Xianyang prospective cohort study. Demographics, cardiac risk factors, and cardiovascular events were identified. Network-based analysis was utilized to examine the relationship between recovery of LVEF and hyperuricemia, and we further elucidated the underlying mechanisms for the impact of hyperuricemia on HFrEF. Results: After adjusting confounding factors by propensity score matching, hyperuricemia was a determinant of HFrEF [OR 1.247 (1.172-1.328); Conclusion: Lower baseline UA value predicted the LVEF recovery and less long-term adverse events in HFrEF patients. Our results provide new insights into underlying mechanistic relationship between hyperuricemia and HFrEF

    Precision cylindricity error measurement system design and error analysis

    No full text
    A precise cylindricity error measurement system is designed for cylindricity error measurement. Firstly, three-point cylindricity error separation algorithm and cylindricity evaluation method are introduced. By eliminating rotation error and random error, accurate roundness error, radius error of different sections and least square center coordinate of measured sections are calculated, which eliminates the influence of installation eccentricity on measurement results. Then, according to the three-point error measurement principle, a set of precise circle is designed. Cylindricity error measurement system, and the use of OpenGL graphics technology to reconstruct the shape of the cylinder and three-dimensional display. Finally, a number of groups of experiments were carried out on the cylinder standard parts, and the experimental results were analyzed. The results show that the system can realize cylindricity error measurement based on three-point method, which is consistent with the nominal accuracy of standard parts, and has certain application value

    Deformation Evolution Law of Surfacing Welding on Thin Bending Plates Based on the Three-Dimensional Thermal Digital Image Correlation Method

    No full text
    Surfacing on the surface of thin metal bending plates will cause significant deformation, and current numerical simulation and experimental methods cannot fully and truly reflect the deformation state of the bending plate. In this paper, a non-contact detection method based on the three-dimensional (3D) thermal digital image correlation (DIC) method is proposed. The proposed method can be used for the 3D full-field dynamic measurement of metal thin bending plate surfaces. In addition, the evolution law of in-plane and out-of-plane deformation of thin bending plates during surfacing welding and cooling was studied. Moreover, the influence of curvature on the shrinkage deformation of thin bending plate weld was explored, and the correlation between the curvature of thin bending plates and the weld shrinkage was established. Results show that the proposed detection method based on the 3D thermal DIC method can rapidly and accurately detect bending deformation online. The out-of-plane deformation of the surfacing welding of the thin bending plate transits from the disk to the saddle. Furthermore, the curvature of the thin bending plate is inversely proportional to the transverse shrinkage of the weld bead. After the curvature reaches a certain value, it has little effect on the longitudinal shrinkage of the weld bead. This detection method solves the problem of welding deformation simulation verification, truly clarifies the law of welding dynamic deformation, and provides a theoretical basis for welding lightweight manufacturing

    Genome-Wide Identification, Expression Analysis and Functional Study of CCT Gene Family in Medicago truncatula

    No full text
    The control of flowering time has an important impact on biomass and the environmental adaption of legumes. The CCT (CO, COL and TOC1) gene family was elucidated to participate in the molecular regulation of flowering in plants. We identified 36 CCT genes in the M. truncatula genome and they were classified into three distinct subfamilies, PRR (7), COL (11) and CMF (18). Synteny and phylogenetic analyses revealed that CCT genes occurred before the differentiation of monocot and dicot, and CCT orthologous genes might have diversified among plants. The diverse spatial-temporal expression profiles indicated that MtCCT genes could be key regulators in flowering time, as well as in the development of seeds and nodules in M. truncatula. Notably, 22 MtCCT genes with typical circadian rhythmic variations suggested their different responses to light. The response to various hormones of MtCCT genes demonstrated that they participate in plant growth and development via varied hormones dependent pathways. Moreover, six MtCCT genes were dramatically induced by salinity and dehydration treatments, illustrating their vital roles in the prevention of abiotic injury. Collectively, our study provides valuable information for the in-depth investigation of the molecular mechanism of flowering time in M. truncatula, and it also provides candidate genes for alfalfa molecular breeding with ideal flowering time

    Calculation and Lubrication Characteristics of Cylindrical Roller Bearing Oil Film with Consideration of Thermal Effects

    No full text
    Aiming at the problem of how the thermal characteristics of cylindrical roller bearings affect the lubrication characteristics of bearings under actual working conditions, the influence of parameters such as speed and load on the lubrication characteristics of cylindrical roller bearings under thermal effects is analyzed. The numerical calculation method combining the quasi-static model of cylindrical roller bearing and the thermal elastohydrodynamic lubrication model is adopted. The effects of rotational speed, load and thermal effect on the lubrication performance of the bearing and the lubrication state under certain oil supply conditions were analyzed via numerical model calculation. The oil film thickness was measured via an immersion ultrasonic method to verify the correctness of the model. The results show that the larger the bearing speed, the larger the central film thickness and the minimum film thickness. At the same time, the thermal effect on the film thickness is more obvious; the greater the load, the greater the maximum oil film pressure. The film thickness gradient in the inlet region is greatly reduced, but the thermal effect has no obvious effect on the overall film thickness. In addition, there is a critical value of effective lubrication film thickness for each set of operating parameters. When the actual film thickness is equal to the critical value, the bearing lubrication state is at its best; the numerical simulation results are compared with the experimental values. Under the calculation conditions, the maximum error at the measuring point is within 10%, which meets the error requirements and provides a theoretical basis for revealing the bearing lubrication mechanism

    Preparation and Characterization of Mg–Al–B Alloy (Mg0.5Al0.5B2) Via High-Temperature Sintering

    No full text
    Boron and its alloys have long been explored as potential fuel and increasingly replace pure aluminum powder in high-energy formulations. The ignition and burning properties of boron can be improved by making boron alloys. In this study, an Mg–Al–B alloy was synthesized from magnesium, aluminum and boron powders in a 1:1:4 molar ratio by preheating to 600 °C for 30 min, followed by high-temperature sintering in a tube furnace. The effects of sintering temperature (700–1000 °C) and holding time (0.5–10 h) on the phase composition of mixed powders were studied. After the samples were cooled to room temperature, they were ground into powder. The phase composition, micromorphology and the bonding forms of elements of the synthesized samples were studied using XRD, SEM and XPS. The results show that each element exists in the form of simple substance in the alloy. The influence of the sintering temperature on the synthesis reaction of Mg0.5Al0.5B2 is very important, but holding time has little effect on it. With the increase of sintering temperature, the content of the Mg0.5Al0.5B2 phase gradually increases, and the phase content of residual metal gradually decreases. The phase and morphology analyses show that the optimum sintering temperature is 1000 °C with a minimum holding time of 0.5 h. It is expected to be used in gunpowder, propellant, explosives and pyrotechnics with improved characteristics

    Effects of Cerium Doping on the Mechanical Properties and Energy-Releasing Behavior of High-Entropy Alloys

    No full text
    Energetic structural materials play an important role in improving the damage performance of future weapons. To improve the energy-releasing behavior, Al0.5NbZrTi1.5Ta0.8Cex high-entropy alloys were prepared by vacuum-arc melting. The results showed the presence of BCC and FCC phases in the alloy with dendritic-morphology-element segregation and there were significant dislocations in the alloys. The current study focused on the effects of cerium content on the dynamic compressive mechanical and energetic characteristics. Cerium doping enhanced the energy-releasing characteristics of high-entropy alloys. The severity of the reaction increased with the increase in the cerium content, while the dynamic compressive strength generally decreased with the increase in cerium content. The Al0.5NbZrTi1.5Ta0.8Ce0.25 showed excellent mechanical and energy-releasing characteristics. The ballistic experiments indicated that Al0.5NbZrTi1.5Ta0.8Ce0.25 can penetrate 6-millimeter A3 plates and ignite the cotton behind the target at a velocity of 729 m/s, making it an ideal energetic structural material

    Mechanical properties and impact energy release characteristics of Al0.5NbZrTi1.5Ta0.8Ce0.85 high-entropy alloy

    No full text
    To explore the potential of high-entropy alloys (HEAs) as energetic structural materials (ESMs), Al _0.5 NbZrTi _1.5 Ta _0.8 Ce _0.85 high-entropy alloys were prepared by vacuum arc melting. XRD and TEM indicated the coexistence of BCC and FCC structures. SEM images illustrated element segregation in HEA. HEA exhibited excellent mechanical properties and impact energy release characteristics. When the strain rate increased from 10 ^–3 s ^−1 to 4500 s ^−1 , the yield strength increased by 56.2% from 909 MPa to 1420 MPa. Under impact, the threshold of strain rate of HEA was about 1200 s ^−1 . Ballistic gun tests were performed to investigate the penetration behaviour and energy release characteristics. Al _0.5 NbZrTi _1.5 Ta _0.8 Ce _0.85 could penetrate 6 mm A _3 plate at the speed of 712 m s ^−1 and ignite the cotton behind the target, combining excellent mechanical properties and impact energy release characteristics
    corecore