1,990 research outputs found

    Adversarial Multi-task Learning for Text Classification

    Full text link
    Neural network models have shown their promising opportunities for multi-task learning, which focus on learning the shared layers to extract the common and task-invariant features. However, in most existing approaches, the extracted shared features are prone to be contaminated by task-specific features or the noise brought by other tasks. In this paper, we propose an adversarial multi-task learning framework, alleviating the shared and private latent feature spaces from interfering with each other. We conduct extensive experiments on 16 different text classification tasks, which demonstrates the benefits of our approach. Besides, we show that the shared knowledge learned by our proposed model can be regarded as off-the-shelf knowledge and easily transferred to new tasks. The datasets of all 16 tasks are publicly available at \url{http://nlp.fudan.edu.cn/data/}Comment: Accepted by ACL201

    Incorporating Discriminator in Sentence Generation: a Gibbs Sampling Method

    Full text link
    Generating plausible and fluent sentence with desired properties has long been a challenge. Most of the recent works use recurrent neural networks (RNNs) and their variants to predict following words given previous sequence and target label. In this paper, we propose a novel framework to generate constrained sentences via Gibbs Sampling. The candidate sentences are revised and updated iteratively, with sampled new words replacing old ones. Our experiments show the effectiveness of the proposed method to generate plausible and diverse sentences.Comment: published in The Thirty-Second AAAI Conference on Artificial Intelligence (AAAI-18), 201
    corecore