21 research outputs found

    Increase in hnRNPA1 Expression Suffices to Kill Motor Neurons in Transgenic Rats

    Get PDF
    A dominant mutation in hnRNPA1 causes amyotrophic lateral sclerosis (ALS), but it is not known whether this mutation leads to motor neuron death through increased or decreased function. To elucidate the relationship between pathogenic hnRNPA1 mutation and its native function, we created novel transgenic rats that overexpressed wildtype rat hnRNPA1 exclusively in motor neurons. This targeted expression of wildtype hnRNPA1 caused severe motor neuron loss and subsequent denervation muscle atrophy in transgenic rats that recapitulated the characteristics of ALS. These findings demonstrate that the augmentation of hnRNPA1 expression suffices to trigger motor neuron degeneration and the manifestation of ALS-like phenotypes. It is reasonable to infer that an amplification of an as-yet undetermined hnRNPA1 function plays a pivotal role in the pathogenesis of familial ALS caused by pathogenic hnRNPA1 mutation

    Targeting of the Human Coagulation Factor IX Gene at rDNA Locus of Human Embryonic Stem Cells

    Get PDF
    BACKGROUND: Genetic modification is a prerequisite to realizing the full potential of human embryonic stem cells (hESCs) in human genetic research and regenerative medicine. Unfortunately, the random integration methods that have been the primary techniques used keep creating problems, and the primary alternative method, gene targeting, has been effective in manipulating mouse embryonic stem cells (mESCs) but poorly in hESCs. METHODOLOGY/PRINCIPAL FINDINGS: Human ribosomal DNA (rDNA) repeats are clustered on the short arm of acrocentric chromosomes. They consist of approximately 400 copies of the 45S pre-RNA (rRNA) gene per haploid. In the present study, we targeted a physiological gene, human coagulation factor IX, into the rDNA locus of hESCs via homologous recombination. The relative gene targeting efficiency (>50%) and homologous recombination frequency (>10(-5)) were more than 10-fold higher than those of loci targeted in previous reports. Meanwhile, the targeted clones retained both a normal karyotype and the main characteristics of ES cells. The transgene was found to be stably and ectopically expressed in targeted hESCs. CONCLUSION/SIGNIFICANCE: This is the first targeting of a human physiological gene at a defined locus on the hESC genome. Our findings indicate that the rDNA locus may serve as an ideal harbor for transgenes in hESCs

    Behavioral and Gene Expression Analysis of Stxbp6-Knockout Mice

    No full text
    Since the first report that Stxbp6, a brain-enriched protein, regulates the assembly of soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complexes, little has been discovered about its functions over the past two decades. To determine the effects of Stxbp6 loss on nervous-system-associated phenotypes and underlying mechanisms, we constructed a global Stxbp6-knockout mouse. We found that Stxbp6-null mice survive normally, with normal behavior, but gained less weight relative to age- and sex-matched wildtype mice. RNA-seq analysis of the cerebral cortex of Stxbp6-null mice relative to wildtype controls identified 126 differentially expressed genes. Of these, 57 were upregulated and 69 were downregulated. Moreover, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that the most significant enriched KEGG term was “complement and coagulation cascades”. Our results suggest some potential regulatory pathways of Stxbp6 in the central nervous system, providing a remarkable new resource for understanding Stxbp6 function at the organism level

    Pathogenic mutation of UBQLN2 impairs its interaction with UBXD8 and disrupts endoplasmic reticulum-associated protein degradation.

    No full text
    Protein aggregation is a common feature of several neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration. How protein aggregates are formed and contribute to neurodegeneration, however, is not clear. Mutation of Ubiquilin 2 (UBQLN2) has recently been linked to ALS and frontotemporal lobar degeneration. Therefore, we examined the effect of ALS-linked UBQLN2 mutation on endoplasmic reticulum-associated protein degradation (ERAD). Compared to its wild-type counterpart, mutated UBQLN2 caused greater accumulation of the ERAD substrate Hong Kong variant of α-1-antitrypsin, although ERAD was disturbed by both UBQLN2 over-expression and knockdown. Also, UBQLN2 interacted with ubiquitin regulatory X domain-containing protein 8 (UBXD8) in vitro and in vivo, and this interaction was impaired by pathogenic mutation of UBQLN2. As UBXD8 is an endoplasmic membrane protein involved in the translocation of ubiquitinated ERAD substrates, UBQLN2 likely cooperates with UBXD8 to transport defective proteins from the endoplasmic reticulum to the cytosol for degradation, and this cell-protective function is disturbed by pathogenic mutation of UBQLN2

    Data-Driven Scene Understanding with Adaptively Retrieved Exemplars

    No full text

    Characterization and microRNA Expression Analysis of Serum-Derived Extracellular Vesicles in Severe Liver Injury from Chronic HBV Infection

    No full text
    Background: Extracellular vesicle (EV) microRNAs have been documented in several studies to have significantly different expressions in hepatitis B virus (HBV)-related liver diseases, such as hepatocellular carcinoma (HCC). The current work aimed to observe the characteristics of EVs and EV miRNA expressions in patients with severe liver injury chronic hepatitis B (CHB) and patients with HBV-associated decompensated cirrhosis (DeCi). Methods: The characterization of the EVs in the serum was carried out for three different groups, namely, patients with severe liver injury-CHB, patients with DeCi, and healthy controls. EV miRNAs were analyzed using miRNA-seq and RT-qPCR arrays. Additionally, we assessed the predictive and observational values of the miRNAs with significant differential expressions in serum EVs. Results: Patients with severe liver injury-CHB had the highest EV concentrations when compared to the normal controls (NCs) and patients with DeCi (p 2, p p p Conclusions: The patients with severe liver injury-CHB had the highest number of EVs. The combination of novel-miR-172-5p and miR-1285-5p in serum EVs helped in predicting the progression of the NCs to severe liver injury-CHB, while the addition of EV miR-335-5p improved the serological accuracy of predicting the progression of severe liver injury-CHB to DeCi

    Damaged DNA Is an Early Event of Neurodegeneration in Induced Pluripotent Stem Cell-Derived Motoneurons with UBQLN2P497H Mutation

    No full text
    Ubiquilin-2 (UBQLN2) mutations lead to familial amyotrophic lateral sclerosis (FALS)/and frontotemporal dementia (FTLD) through unknown mechanisms. The combination of iPSC technology and CRISPR-mediated genome editing technology can generate an iPSC-derived motor neuron (iPSC-MN) model with disease-relevant mutations, which results in increased opportunities for disease mechanism research and drug screening. In this study, we introduced a UBQLN2-P497H mutation into a healthy control iPSC line using CRISPR/Cas9, and differentiated into MNs to study the pathology of UBQLN2-related ALS. Our in vitro MN model faithfully recapitulated specific aspects of the disease, including MN apoptosis. Under sodium arsenite (SA) treatment, we found differences in the number and the size of UBQLN2+ inclusions in UBQLN2P497H MNs and wild-type (WT) MNs. We also observed cytoplasmic TAR DNA-binding protein (TARDBP, also known as TDP-43) aggregates in UBQLN2P497H MNs, but not in WT MNs, as well as the recruitment of TDP-43 into stress granules (SGs) upon SA treatment. We noted that UBQLN2-P497H mutation induced MNs DNA damage, which is an early event in UBQLN2-ALS. Additionally, DNA damage led to an increase in compensation for FUS, whereas UBQLN2-P497H mutation impaired this function. Therefore, FUS may be involved in DNA damage repair signaling

    Paired CRISPR/Cas9 Nickases Mediate Efficient Site-Specific Integration of F9 into rDNA Locus of Mouse ESCs

    No full text
    Hemophilia B (HB) is an X-linked recessive bleeding disorder, caused by F9 gene deficiency. Gene therapy combined with the CRISPR/Cas9 technology offers a potential cure for hemophilia B. Now the Cas9 nickase (Cas9n) shows a great advantage in reducing off-target effect compared with wild-type Cas9. In this study, we found that in the multicopy ribosomal DNA (rDNA) locus, the homology directed recombination (HDR) efficiency induced by sgRNA-Cas9n was much higher than sgRNA-Cas9, meanwhile without off-target in six predicted sites. After co-transfection into mESCs with sgRNA-Cas9n and a non-viral rDNA targeting vector pMrnF9, harboring the homology donor template and the human F9 expression cassette, a recombination efficiency of 66.7% was achieved and all targeted clones were confirmed to be site-specific integration of F9 in the rDNA locus by PCR and southern blotting. Targeted mESCs retained the main pluripotent properties and were then differentiated into hepatic progenitor like cells (HPLCs) and mature hepatocytes, which were characterized by hepatic markers and functional assays. Importantly, the differentiated cells could transcribe exogenous F9 and secrete coagulation factor IX (FIX) proteins, suggesting active transcription and stable inheritance of transgenes in the rDNA locus. After intrasplenical transplantation in severe combined immune deficiency (SCID) mice, targeted HPLCs could survive and migrate from spleen to liver, resulting in secretion of exogenous FIX into blood. In summary, we demonstrate an efficient and site-specific gene targeting strategy in rDNA locus for stem cell-based gene therapy for hemophilia B
    corecore