3,159 research outputs found

    Pharmacokinetic/Pharmacodynamic Correlation of Cefquinome Against Experimental Catheter-Associated Biofilm Infection Due to Staphylococcus aureus.

    Get PDF
    Biofilm formations play an important role in Staphylococcus aureus pathogenesis and contribute to antibiotic treatment failures in biofilm-associated infections. The aim of this study was to evaluate the pharmacokinetic/pharmacodynamic (PK/PD) profiles of cefquinome against an experimental catheter-related biofilm model due to S. aureus, including three clinical isolates and one non-clinical isolate. The minimal inhibitory concentration (MIC), minimal biofilm inhibitory concentration (MBIC), biofilm bactericidal concentration (BBC), minimal biofilm eradication concentration (MBEC) and biofilm prevention concentration (BPC) and in vitro time-kill curves of cefquinome were studied in both planktonic and biofilm cells of study S. aureus strains. The in vivo post-antibiotic effects (PAEs), PK profiles and efficacy of cefquinome were performed in the catheter-related biofilm infection model in murine. A sigmoid E max model was utilized to determine the PK/PD index that best described the dose-response profiles in the model. The MICs and MBICs of cefquinome for the four S. aureus strains were 0.5 and 16 μg/mL, respectively. The BBCs (32-64 μg/mL) and MBECs (64-256 μg/mL) of these study strains were much higher than their corresponding BPC values (1-2 μg/mL). Cefquinome showed time-dependent killing both on planktonic and biofilm cells, but produced much shorter PAEs in biofilm infections. The best-correlated PK/PD parameters of cefquinome for planktonic and biofilm cells were the duration of time that the free drug level exceeded the MIC (fT > MIC, R (2) = 96.2%) and the MBIC (fT > MBIC, R (2) = 94.7%), respectively. In addition, the AUC24h/MBIC of cefquinome also significantly correlated with the anti-biofilm outcome in this model (R (2) = 93.1%). The values of AUC24h/MBIC for biofilm-static and 1-log10-unit biofilm-cidal activity were 22.8 and 35.6 h; respectively. These results indicate that the PK/PD profiles of cefquinome could be used as valuable guidance for effective dosing regimens treating S. aureus biofilm-related infections

    Deep Neural Mel-Subband Beamformer for In-car Speech Separation

    Full text link
    While current deep learning (DL)-based beamforming techniques have been proved effective in speech separation, they are often designed to process narrow-band (NB) frequencies independently which results in higher computational costs and inference times, making them unsuitable for real-world use. In this paper, we propose DL-based mel-subband spatio-temporal beamformer to perform speech separation in a car environment with reduced computation cost and inference time. As opposed to conventional subband (SB) approaches, our framework uses a mel-scale based subband selection strategy which ensures a fine-grained processing for lower frequencies where most speech formant structure is present, and coarse-grained processing for higher frequencies. In a recursive way, robust frame-level beamforming weights are determined for each speaker location/zone in a car from the estimated subband speech and noise covariance matrices. Furthermore, proposed framework also estimates and suppresses any echoes from the loudspeaker(s) by using the echo reference signals. We compare the performance of our proposed framework to several NB, SB, and full-band (FB) processing techniques in terms of speech quality and recognition metrics. Based on experimental evaluations on simulated and real-world recordings, we find that our proposed framework achieves better separation performance over all SB and FB approaches and achieves performance closer to NB processing techniques while requiring lower computing cost.Comment: Submitted to ICASSP 202
    • …
    corecore