20,617 research outputs found
Vibration Induced Non-adiabatic Geometric Phase and Energy Uncertainty of Fermions in Graphene
We investigate geometric phase of fermion states under relative vibrations of
two sublattices in graphene by solving time-dependent Sch\"{o}dinger equation
using Floquet scheme. In a period of vibration the fermions acquire different
geometric phases depending on their momenta. There are two regions in the
momentum space: the adiabatic region where the geometric phase can be
approximated by the Berry phase and the chaotic region where the geometric
phase drastically fluctuates in changing parameters. The energy of fermions due
to vibrations shows spikes in the chaotic region. The results suggest a
possible dephasing mechanism which may cause classical-like transport
properties in graphene.Comment: 9 pages, 5 figure
MeV oxygen ion implantation induced compositional intermixing in AlAs/GaAs superlattices
We present in this letter an investigation of compositional intermixing in AlAs/GaAs superlattices induced by 2 MeV oxygen ion implantation. The results are compared with implantation at 500 keV. In addition to Al intermixing in the direct lattice damage region by nuclear collision spikes, as is normally present in low-energy ion implantation, Al interdiffusion has also been found to take place in the subsurface region where MeV ion induced electronic spike damage dominates and a uniform strain field builds up due to defect generation and diffusion. Uniform compositional intermixing of the superlattices results after subsequent thermal annealing when Al interdiffusion is stimulated through recovery of the implantation-induced lattice strain field, the reconstruction and the redistribution of lattice defects, and annealing of lattice damage
The generalized KP hierarchy
We propose one possible generalization of the KP hierarchy, which possesses
multi bi--hamiltonian structures, and can be viewed as several KP hierarchies
coupled together.Comment: 12
Local vertical measurements and violation of Bell inequality
For two qubits belonging to Alice and Bob, we derive an approach to setup the
bound of Bell operator in the condition that Alice and Bob continue to perform
local vertical measurements. For pure states we find that if the entanglement
of the two qubits is less than 0.2644 (measured with von Neumann entropy) the
violation of the Bell inequality will never be realized, and only when the
entanglement is equal to 1 the maximal violation () can occur. For
specific form of mixed states, we prove that the bound of the Bell inequality
depends on the concurrence. Only when the concurrence is greater than 0.6 the
violation of the Bell inequality can occur, and the maximal violation can never
be achieved. We suggest that the bound of the Bell operator in the condition of
local vertical measurements may be used as a measure of the entanglement.Comment: 4 pages, 3 figure
Superconducting quantum phase transitions tuned by magnetic impurity and magnetic field in ultrathin a-Pb films
Superconducting quantum phase transitions tuned by disorder (d), paramagnetic
impurity (MI) and perpendicular magnetic field (B) have been studied in
homogeneously disordered ultrathin a-Pb films. The MI-tuned transition is
characterized by progressive suppression of the critical temperature to zero
and a continuous transition to a weakly insulating normal state with increasing
MI density. In all important aspects, the d-tuned transition closely resembles
the MI-tuned transition and both appear to be fermionic in nature. The B-tuned
transition is qualitatively different and probably bosonic. In the critical
region it exhibits transport behavior that suggests a B-induced mesoscale phase
separation and presence of Cooper pairing in the insulating state.Comment: 17 pages, 4 figure
Inverse Magnetoresistance of Molecular Junctions
We present calculations of spin-dependent electron transport through single
organic molecules bridging pairs of iron nanocontacts. We predict the
magnetoresistance of these systems to switch from positive to negative with
increasing applied bias for both conducting and insulating molecules. This
novel inverse magnetoresistance phenomenon is robust, does not depend on the
presence of impurities, and is unique to molecular and atomic nanoscale
magnetic junctions. Its physical origin is identified and its relevance to
experiment and to potential technological applications is discussed.Comment: 5 pages, 3 figures; published version Phys. Rev.
Lattice Boltzmann Approach to High-Speed Compressible Flows
We present an improved lattice Boltzmann model for high-speed compressible
flows. The model is composed of a discrete-velocity model by Kataoka and
Tsutahara [Phys. Rev. E \textbf{69}, 056702 (2004)] and an appropriate
finite-difference scheme combined with an additional dissipation term. With the
dissipation term parameters in the model can be flexibly chosen so that the von
Neumann stability condition is satisfied. The influence of the various model
parameters on the numerical stability is analyzed and some reference values of
parameter are suggested. The new scheme works for both subsonic and supersonic
flows with a Mach number up to 30 (or higher), which is validated by well-known
benchmark tests. Simulations on Riemann problems with very high ratios
() of pressure and density also show good accuracy and stability.
Successful recovering of regular and double Mach shock reflections shows the
potential application of the lattice Boltzmann model to fluid systems where
non-equilibrium processes are intrinsic. The new scheme for stability can be
easily extended to other lattice Boltzmann models.Comment: Figs.11 and 12 in JPEG format. Int. J. Mod. Phys. C (to appear
Influence of substrate temperature on lattice strain field and phase transition in MeV oxygen ion implanted GaAs crystals
A detailed study of the influence of substrate temperature on the radiation-induced lattice strain field and crystalline-to-amorphous (c-a) phase transition in MeV oxygen ion implanted GaAs crystals has been made using channeling Rutherford backscattering spectroscopy, secondary ion mass spectrometry, and the x-ray rocking curve technique. A comparison has been made between the cases of room temperature (RT) and low temperature (LT) (about 100 K) implantation. A strong in situ dynamic annealing process is found in RT implantation at a moderate beam current, resulting in a uniform positive strain field in the implanted layer. LT implantation introduces a freeze-in effect which impedes the recombination and diffusion of initial radiation-created lattice damage and defects, and in turn drives more efficiently the c-a transition as well as strain saturation and relaxation. The results are interpreted with a spike damage model in which the defect production process is described in terms of the competition between defect generation by nuclear spikes and defects diffusion and recombination stimulated by electronic spikes. It is also suggested that the excess population of vacancies and their complexes is responsible for lattice spacing expansion in ion-implanted GaAs crystals
Gathering experience in trust-based interactions
As advances in mobile and embedded technologies coupled with progress in adhoc networking fuel the shift towards ubiquitous computing systems it is becoming increasingly clear that security is a major concern. While this is true of all computing paradigms, the characteristics of ubiquitous systems amplify this concern by promoting spontaneous interaction between diverse heterogeneous entities across administrative boundaries [5]. Entities cannot therefore rely on a specific control authority and will have no global view of the state of the system. To facilitate collaboration with unfamiliar counterparts therefore requires that an entity takes a proactive approach to self-protection. We conjecture that trust management is the best way to provide support for such self-protection measures
- …