
Strathprints Institutional Repository

English, C. and Terzis, S. (2006) Gathering experience in trust-based interactions. In: Proceedings
of 4th International Conference on Trust Management. Lecture Notes in Computer Science .
Springer, pp. 62-76. ISBN 3540342958

Strathprints is designed to allow users to access the research output of the University of Strathclyde.
Copyright c© and Moral Rights for the papers on this site are retained by the individual authors
and/or other copyright owners. You may not engage in further distribution of the material for any
profitmaking activities or any commercial gain. You may freely distribute both the url (http://
strathprints.strath.ac.uk/) and the content of this paper for research or study, educational, or
not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to Strathprints administrator:
mailto:strathprints@strath.ac.uk

http://strathprints.strath.ac.uk/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Strathclyde Institutional Repository

https://core.ac.uk/display/9015861?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://strathprints.strath.ac.uk/
http://strathprints.strath.ac.uk/
mailto:strathprints@strath.ac.uk
http://strathprints.strath.ac.uk/

English, C. and Terzis, S. (2006) Gathering experience in trust-based
interactions. In: Proceedings of 4th International Conference on Trust
Management. Lecture Notes in Computer Science. Springer, pp. 62-76.
ISBN 3540342958

http://eprints.cdlr.strath.ac.uk/2783/

Strathprints is designed to allow users to access the research
output of the University of Strathclyde. Copyright © and Moral
Rights for the papers on this site are retained by the individual
authors and/or other copyright owners. Users may download
and/or print one copy of any article(s) in Strathprints to facilitate
their private study or for non-commercial research. You may not
engage in further distribution of the material or use it for any
profitmaking activities or any commercial gain. You may freely
distribute the url (http://eprints.cdlr.strath.ac.uk) of the Strathprints
website.

Any correspondence concerning this service should be sent to The
Strathprints Administrator: eprints@cis.strath.ac.uk

http://eprints.cdlr.strath.ac.uk/2815/

Gathering Experience in Trust-based Interactions

Colin English and Sotirios Terzis

University of Strathclyde
Department of Computer and Information Sciences

{Firstname.Lastname}@cis.strath.ac.uk

Abstract. Evidence based trust management, where automated decision making
is supported through collection of evidence about the trustworthiness of entities
from a variety of sources, has gained popularity in recent years. So far work in
this area has primarily focussed on schemes for combining evidence from poten-
tially unreliable sources (recommenders) with the aim of improving the quality
of decision making. The large body of literature on reputation systems is testa-
ment to this. At the same time, little consideration has been given to the actual
gathering of useful and detailed experiential evidence. Most proposed systems
use quite simplistic representations for experiences, and mechanisms where high
level feedback is provided by users. Consequently, these systems provide limited
support for automated decision making. In this paper we build upon our previous
work in trust-based interaction modelling and we present an interaction monitor
that enables automated collection of detailed interaction evidence. The monitor
is a prototype implementation of our generic interaction monitoring architecture
that combines well understood rule engine and event management technology.
This paper also describes a distributed file server scenario, in order to demon-
strate our interaction model and monitor. Finally, the paper presents some pre-
liminary results of a simulation-based evaluation of our monitor in the context of
the distributed file server scenario.

1 Introduction

Trust management is emerging as a promising technology for facilitating collaboration
with entities in environments where traditional security paradigms cannot be enforced
due to lack of centralised control and incomplete knowledge of the environment. In
particular, evidence-based trust management attempts to mitigate the risks inherent in
interactions lacking concrete security assurances by gathering evidence to support trust-
ing decision making.

Studying the literature on evidence based trust management highlights that most
systems focus on sharing evidence and opinions among peers and combining this evi-
dence to make trust decisions (e.g. [10]). However, the means to gather personal experi-
ential evidence is often lacking. The systems that provide such functionality tend to use
simple representations of experience, such as a numeric rating (e.g. [1]). To support an
expressive trust model for decision making in complex interactions, it becomes more
important to get detailed feedback upon which to base future decisions. Additionally,
many systems rely on the user to provide feedback (e.g. [14]). Even in commercial
systems, such as EBay the user provides very simple feedback ratings. However, many

interaction decisions that might benefit from trust management techniques will take
place in the absence of a user. Even with the user present, it may not be appropriate
or convenient to require them to provide feedback. This introduces a requirement for
feedback to be largely automated.

This work builds upon our earlier work in trust management [5], which defined
a trust model [11] that recognises the strong link between personal observations and
trust. The model views an interaction as a set of possible outcomes, based of a set
of observable events within the interaction, which is organised in an event structure
(see [11] for details). Computations can be defined over interaction outcome histories
to derive a trust value for a specific entity. In conjunction with information on the costs
of the possible outcomes, a trust value enables the evaluation of risk in an interaction to
facilitate a decision process [13]. In [4], we defined an interaction model that extended
this trust model to capture more detailed observations about generic interactions and
their associated costs. An application developer can instantiate this model for a specific
type of interaction to define a set of observations that may be made either directly or
indirectly about the behaviour of a trustee. The observations are defined to represent the
aspects of the interaction type that the developer deems relevant to a trusting decision.
The model is event based, facilitating the automated gathering of objective evidence
for subjective evaluation in a decision process. The same paper presented initial steps
towards automating this evidence gathering, introducing a preliminary architecture for
a generic monitor that could be used to follow interactions based on the model.

In this paper, we advance our previous work by refining the monitor architecture and
examining the use of existing reactive technologies to provide an implementation of the
architecture. After briefly outlining the interaction model in section 2, we describe the
requirements for the monitor in section 3, followed by a refined monitor architecture
in section 4. These refinements were the result of a more thorough investigation of the
technologies used in the monitor and the instantiation of the model for specific applica-
tion scenarios. In section 5 we present a prototype implementation of the architecture.
In section 6 we present a preliminary evaluation of the prototype. This is based on a
particular instantiation of the interaction model for a file server scenario (presented in
section 6.1), which forms the basis for a simulation platform outlined in section 6.2.
This simulation platform and the prototype monitor provide a basis for our evaluation,
some preliminary results of which are presented in section 6.3. The paper concludes
and looks to the future in section 7.

2 The Interaction Model

Our interaction model provides a number of extensions to the trust model in [11] that
allow more detailed observations to be made about the state of an interaction in order
to fully support a trust-based decision process. The focus of our model remains on ob-
servable events that capture a variety of aspects of the interaction. The events of the
model can be further decomposed into a set of trust events (ET) and a set of cost events
(EC). The trust events are those which capture the aspects of an interaction that reflect
the trustee’s behaviour in some way and hence something relevant to its trustworthiness
(e.g. a file server’s integrity). This set takes the form of an event structure. The cost

events are added to the model in order to represent an occurrence of something that
affects the costs associated with outcomes rather than the outcomes themselves. Thus
we may also capture the dynamism of interaction progression from a cost perspective.
To increase the flexibility of the trust events, we can further subdivide ET into directly
observable events and quantified events. While the former represent aspects of an in-
teraction that can be expressed through single event instances, some aspects require the
more abstract notion of quantified events, which are single logical events under which a
series of low level observations can be aggregated, to form a measure of the quantified
event (e.g. the latency measure of a file server). The low level observations are referred
to as measure events. The relationship between the main event types can be seen in fig-
ure 1. Measure events are not shown, as although observable as single event instances,
they are not part of the trust event structure, merely incorporated into an outcome via
the measures of quantified events.

Trust Events Direct Observable
Events

Quantified Events
(aggregate measures) Cost Events

Model Events

Fig. 1. Event Type Relationships.

Modelling a particular type of interaction involves identifying the above sets of
observable events for the set of outcomes. Through these event sets, we have means of
representing the state of an interaction from start to finish. Experience thus represents
objective evidence which can be evaluated subjectively for trust decision making, such
that we can differentiate fact and opinion. The feedback loses no information and can be
as detailed as the specified interaction model. Furthermore, feedback can be provided
throughout an interaction rather than at its conclusion, which can be useful in adjusting
our trust opinions in a timely fashion. The model is described in more detail in [3].

3 The Monitor Requirements

The monitor is designed to operate as a service on a single device that can monitor
interactions for a number of that device’s applications. We have chosen to co-locate the
monitor with the client application as this provides some privacy within the context of a
single user’s machine. In cases where the monitor needs to run on a resource constrained
device, it could run in a proxy configuration providing access to an external service on
a more powerful machine, in a manner transparent to the application.

From the interaction model described above, the natural separation of trust and cost
events provides us with a means of separately representing the trust-state and cost-state
of an interaction. All events from ET seen so far in an interaction represent its trust-
state. The cost-state is represented by a mapping from the possible outcomes to the
currently associated costs and the set of events from EC seen so far. Together, these
states give us the interaction-state, which can be used to provide detailed feedback at
any point during an interaction. The two main issues that arise for the monitor here are
how to collect the events that contribute to the interaction state and when to pass the
collected information back to the client application.

3.1 Event Communication

Even though the monitor and application may exist on the same machine, it is likely that
the sources of many events will be remote. As we may have event sources external to
both the monitor and client application, we can see three categories of interaction model
events emerge. These are events internal to the client application, those external to the
application yet from the trustee and those external to both, perhaps from some separate
service. Event (or messaging) systems provide a form of asynchronous messaging that
allows the monitor to be decoupled from event sources, while supporting many different
event systems via plug-ins and maintaining the generic qualities of the monitor.

Features of individual event systems vary widely. A major factor is the connection
model communication is based on. A single central event broker is inappropriate for dis-
tributed and heterogeneous event sources and prone to failure. Hierarchically distributed
event servers or an even more decentralised peer-to-peer (P2P) network is preferable.
Most event systems support both point-to-point (PTP) or publish/subscribe (pub/sub)
messaging. PTP messaging uses dedicated queues and is suitable for internal client and
trustee events, where the client can inform the monitor on how to subscribe to the par-
ticular source. However, events from an external service will generally be global rather
than interaction specific in scope, such as cost events that affect more than one appli-
cation. These events fit more appropriately with a pub/sub paradigm which allows for
many-to-many event communication where the the subscriber does not need to know
the specific source. Whether PTP or pub/sub is used, the client application must tell the
monitor how and where to subscribe to event sources.

Our event system requirements also include the ability for the source to push events
to a consumer rather than have the consumer periodically request notifications, in order
that they be received in a timely fashion. The event notifications must permit parame-
ters to incorporate any pertinent information about the event itself. Reliability of event
notification is closely linked to the fault tolerance of the underlying connection model
and its network protocols. However, many systems also offer some form of message
persistence like store and forward or polling. Best effort delivery is likely to be the limit
of our reliability guarantee for the monitor in general, as the monitor has little or no
control over the measures the sources employ. Finally, security measures are important
to ensure the privacy of generated events.

3.2 Provision of Feedback

Through the interaction model and a suitable event system, we have the means to both
gather and represent interaction-state. We therefore need some means to reason over it
in order to provide relevant feedback when required. At the end of an interaction, it is
clear that we should pass all collected evidence to the application in order to update
the interaction history with the new outcome and provide the best support for decision
making possible. However, there may be some scenarios in which we would like either
periodic updates during an interaction, or even notification of certain states that we
deem important in order to take action and minimise damage. Furthermore, prompt
feedback spanning across the ongoing interactions can provide the most up to date
relevant evidence for decisions. We need to be able to communicate to the monitor

the desired feedback and when to deliver it. Therefore, we use a rule-engine-based
architecture whereby the application can specify rules about feedback and the monitor
can reason over the state to meet the needs of a particular client.

We use a particular type of rule, called Event Condition Action Rules (ECA rules).
ECA rule engines have been commonly used in active databases [12] for a number of
years, but are now coming into more widespread use through decoupling them from
specific database systems to make more generic reasoning engines [2]. ECA rules ex-
press an action to execute when some combination of events is witnessed, provided that
a boolean condition holds true. These rules are the natural choice given that we have
an event based interaction model to provide triggers for the rules and values from event
counts, parameters and outcome costs for use in conditions. The client can define a set
of these rules and communicate them to the monitor, such that it can provide feedback
as defined in the action part of a rule. It should be clear that the monitor therefore need
not understand the semantics of the events, rather just match patterns as defined in the
rules. It is up to the definer of a specific rule to specify meaningful feedback for itself,
which might take the form of a pertinent message or reports of current interaction-state.

The features of different existing ECA engines vary a great deal. A good framework
for evaluating the range of functionalities can be found in [12]. For our purposes, it is
mainly important to ensure that the engine provides for the kind of rules that are useful
given the interaction model. For example, the operators permissible for event combina-
tions and conditions is important. This will include primarily logical set combinations
for events, and arithmetic functions and comparisons for the value based conditions.
The engine must support parameterised events such that the associated values can be
of use in conditions. The primary consideration for rule actions is that the communi-
cation mechanism for reporting feedback can be called upon. The mechanism may be
either synchronous or asynchronous, as we can use the same inter-process mechanism
used for the monitor’s management API to provide callbacks, or use the event commu-
nication mechanism to send a feedback message. A further useful feature would be the
ability to have rules generate events upon which other rules could be triggered, com-
monly referred to as the cycle policy of the engine. This would allow the monitor itself
to generate events for chaining or even blocking other rules as specified by the rule
set definer. In section 5 we will describe how our prototype monitor incorporates the
functionality outlined here.

4 The Monitor Architecture

With the above considerations in mind, we can go on to describe an architecture for a
monitor, which operates as a self-contained software component to enable it to be used
in a generic fashion across a range of applications. In [4], we described our preliminary
architecture, which has now been refined. The refined high-level architecture can be
seen in figure 2.

The architecture highlights the responsibilities of the different components and the
interfaces between them and the management API of the monitor. In this section we
will highlight the major changes from the previous architecture in [4]. The monitor is
itself constructed from various components. Firstly, an Event Manager (EM) is respon-

APPLICATION
MONITOR

Publish/Subscribe Topic

Trustee/Service Event
Generator

....
External process 1

External process n
External process 2

publish
publish

publish

Cost M
anager

INTERACTION
MANAGER

EVENT MANAGER

ECA ENGINE
INTERACTION
STATE

Rule Manager

Action Executor

ECA rule set

Transformation
Adapter

Subscriber

Event M
anager

Trigger Evaluator

Condition Evaluator

Cost State

Trust State

Event Source
information

register(appSetUp,responseQ
)

initialize(xnSetUp, rules)

notify(e)

subscribe/unsubscribe

notify(feedback)

updateCS(costTable)

updateCS(costTable)

notify

register(ruleID)

register(ruleID)

register(ruleID)

evaluate(ruleID)

execute(ruleID)

subscribe(sources)

notify(e)

notify(e)

PTP connect/disconnect

notifyApp(feedback,responseQ
)

query(expr)

query(e_set)

M
ethod call

Event interactions

Event Queue

notifyM
onitor(e, ID)

load(rules)

add(e)

deregister(ruleID)

deregister(ruleID)

deregister(ruleID)

Event Queue

subscribe(sources)

Fig.2.T
he

M
onitorA

rchitecture.

sible for subscribing to all events. The EM has been refined to clarify its responsibility
for translating events for further processing. The Interaction-state Store (IS) component
maintains trust and cost-state in working memory, accessible to the final major com-
ponent, the ECA Rule Engine (RE), which has been refined based on investigations
into rule engine implementations. These monitor components are not visible to the ap-
plication, which interacts with the monitor mainly via its public API for management
purposes.

The monitor API has been made more concrete in the new architecture, as can be
seen in figure 2. The API provides the means by which an application can register itself
and its interaction model, via the register(appSetUp,responseQ) method. To
initiate monitor ing of a particular interaction, the initialize(xnSetUp,rules)
method can be called. Via the updateCS(CostTable) method, an application can
explicitly define costs to associate with an interaction’s outcomes, perhaps triggered by
feedback when the monitor receives a cost event. This is appropriate when the appli-
cation has some complex means of determining what certain events mean in terms of
costs it will incur. However, in many cases, the application will be abe to define a set
of rules for cost updates which incorporate functions to alter the costs directly on the
monitor.

The EM exposes a subscribe(sources) method for the monitor to forward
subscription details from the API’s subscribe(sources) method. The Subscriber
subcomponent of the EM is responsible for creating and maintaining PTP and pub/sub
connections to event sources based on this information. All event notifications are
timestamped 1 and passed to the Transformation Adapter (TA), which then translates
them from the source format into that used in the IS and RE. The Subscriber and TA can
be extended via plug-ins for new event systems. The EM also provides feedback through
the messaging system when the RE calls the notifyApp(feedback,responseQ)
method as a rule action. The EM calls the IS’s add(e) method to pass all event notifi-
cations into storage.

The IS represents the working memory for the RE, providing access to the relevant
elements of interaction-state for rules. Sets of events and cost tables are stored and up-
dated for each ongoing interaction. When an interaction’s final outcome has been fed
back to the application, the events of that outcome may be removed from the IS. The
updateCS(costTable)method provides the means for the costs of a specific inter-
action’s outcomes to be updated from the application. The methods query(e set)
and query(expr) allow the components of the RE to query the state of particular
interactions for rule evaluation. Finally, the IS is also responsible for notifying the RE
of new events via its notify(e) method.

Finally, we come to the reactive component of the monitor, the ECA Rule Engine
(RE), consisting of a number of decoupled sub-components. The Rule Manager (RM)
manages rule activation, execution, scheduling and represents the state of each active
rule. Rules are registered via the load(rules) method and propagated to the rel-
evant component. The RM maintains state for the event trigger part of rules, to be
processed and updated by the Trigger Evaluator (TE) as notifications of events are re-

1 The notifications are timestamped in the EM when observed as remote clocks cannot be relied
upon for consistent time.

ceived through its notify(e) method. Trigger state can be seen as a tree structure
of logical primitive event combinations, the expressiveness of which depends on the
rule language. When the root of the tree becomes true, the evaluate(ruleID)
method of the Condition Evaluator (CE) is called automatically. The CE is then respon-
sible for evaluating the boolean expression in the condition part of the rule by querying
the IS. Again the operators supported in the boolean expression depends on the rule
language. If the condition is true, the CE calls the execute(ruleID) method of
the Action Executor (AE), which schedules relevant rule’s action for execution. The
notifyApp(feedback, responseQ) method of the EM is commonly called by
the action of a rule to pass relevant feedback as message through the appropriate event
system. The message is defined in the rule and should contain all pertinent information.

The application component in figure 2 just outlines the type of components that the
application might have, but this will be up to the developer of the application.

5 A Prototype Monitor

A prototype monitor has been developed for the evaluation of the architecture and inter-
action model. It was implemented in Java to take advantage of available class libraries
and technologies for the two main functional aspects of the monitor; the ECA rule
engine and the event system. The monitor exports an RMI remote interface for the ap-
plication to interaction with, in accordance with the monitor architecture. The monitor
runs as a single thread which enables single-point logging of interaction events as seen
by the event manager, for the purpose of interaction trace replay and testing of different
rule sets.

A myriad of rule engines are available (e.g. [7, 9]), which offer varied functionality.
Having examined a range of such technologies, we chose the Java Expert System Shell
(Jess) [6] to implement the ECA rule engine as it is very well documented and sup-
ported, with a large user community. It provides very good integration with Java, rang-
ing from applications written purely in Java code to mainly Jess code simply launched
through a Java application. The Jess Shell can also be used as a Java scripting envi-
ronment to aid in rapid prototyping. As everything we reason over must be available
in working memory, we have in effect combined the IS and RE into one component,
the ECA Engine, which instantiates the Jess inference engine. Jess uses the Rete al-
gorithm [6], in which rules have state modelled internally in a manner similar to the
complex event tree mentioned in section 4. A Rete network is built from single input
fact nodes and two input join nodes. The fact nodes represent patterns and the join nodes
represent a number of conditional elements such as logical combinations of facts. Rete
shares nodes across the set of rules for more efficient processing. A rule is executed
once for each matching set of facts. Furthermore, queries over working memory can be
defined and run under direct program control to process collections of facts. Jess is not
explicitly designed for ECA rules, rather for inference in applications such as Expert
Systems. However, ECA rules can be modelled by asserting facts for events and spec-
ifying conditions using test conditional elements that may contain arbitrary boolean
expressions written in the Jess language. Furthermore, it is possible to define functions

in Jess code to extend the functionality/operator set. Similar functions can be defined to
perform the necessary actions, expressed on the left hand side of the rules.

5.1 Coding the Generic Interaction Model in Jess

Before we can assert facts into working memory to represent interaction-state, we must
define templates for the facts in accordance with our interaction model. Thus the generic
interaction model is defined in the monitor by running a batch file of template defini-
tions through the instantiated Jess engine. An interaction template is defined with fields
to store interaction, application and trustee IDs along with the queue-name to which
feedback should be sent. A measure template allows for temporary storage of measure
events until they are assigned to the relevant quantified events at the end of an interac-
tion. An outcome-cost template allows a cost to be associated with a specific outcome
for a specific interaction. An event template is defined with fields to link asserted event
facts to a specific interaction and store a timestamp. This basic event template is fur-
ther extended to a trust-event template and cost-event template, which themselves are
further extended to produce measure-event, direct-observable-event, quantified-event
templates etc. This extension mechanism is also the means by which a specific applica-
tion’s interaction model is defined. New specific event templates extend the basic event
templates to give a hierarchy of event types (see the examples in section 6.1). This en-
ables useful queries to be expressed over the working memory that allow, for example,
all events relating to a particular trustee to be processed in some way. We have defined
a basic set of queries over the templates of the generic interaction model, including
queries over specific application templates based on template names.

(defquery find-xn-named-events
(declare (variables ?xn ?name))
?ev <- (event (xnID ?xn))
(test (eq ((?ev getDeftemplate) getBaseName) ?name)))

The results of queries can be iterated over and processed to provide useful function-
ality for test clauses (i.e. rule conditions). We therefore further define a set of generic
functions that may be used in test clauses or for feedback actions. This set includes
functions to determine the maximum/minimum/average/total value of a particular field
from a collection of facts and functions to extract particular facts or values amongst oth-
ers. An important function notify-xn-app is defined for rule actions, which calls a java
method in the monitor from the Jess engine to return a feedback string via the response
queue for a specified interaction.

(deffunction notify-xn-app (?xnID ?string)
((fetch MONITOR) notifyApp

(get-specific-interaction-response-queue ?xnID) ?string))

In effect these queries and functions extend the expressivity of the rule language, so
to be of use they must be defined in the working memory before rules can be defined
that use them. In fact, a developer can also define new functions for use in test clauses,
to be supplied as part of the interaction set up phase.

5.2 Implementing the Event Manager

The other major component for the monitor is the Event Manager, implemented to en-
able plug-in event systems via an extension of a MessengerLayer interface. For the
monitor prototype, we wished to use a decentralised system, preferably with a P2P
connection model. Furthermore, we felt a standards based approach that supported both
PTP and pub/sub would be beneficial, to show that a number of implementations of such
a standard could easily be supported. For these reasons, we sought an appropriate im-
plementation of the Java Messaging Service (JMS)interfaces which provide a standard
for asynchronous event communication in the Java language. Various implementations
(or JMS providers) available which support a P2P connection model, but we decided to
use MantaRay [8] as it provides its P2P functionality through a self-contained transport
layer implemented over either TCP or SSH and HTTP, with the necessary discovery
protocols. Furthermore, it implements persistence through a store and forward mecha-
nism and has highly configurable logging mechanisms.

The plug-in built for MantaRay sets up the necessary JMS connections to the trans-
port layer for both queue (PTP) and topic (pub/sub) based messaging. It manages col-
lections of message senders, receivers, publishers and subscribers and facilitates the
sending and publishing of events via method calls. Finally it acts as a message lis-
tener, passing any notifications onto the Transformation Adapter component. The mes-
sages received must be in the form of JMS Map messages in the prototype as these
enable name-value mapping for event parameters. This is to simplify the Transforma-
tion Adapter of the plug-in to have only one input format which it must translate into
Jess assertions. To enable translation, the application must supply the adapter with tem-
plate objects for all event types in its interaction model. These templates define which
event parameters are strings or numbers, ensuring correct assertion strings can be built
for execution in the Jess engine.

6 Monitor Evaluation

Before presenting the evaluation of the monitor and interaction model, it is important
to discuss the performance of the Jess and MantaRay technologies that form the basis
of the monitor. As the Rete algorithm upon which Jess is based maintains rule state and
only updates changes, its complexity is something like O(R′F ′P ′

) where R′ is a num-
ber less than R the current number of rules, F ′ is the number of facts that have changed
and P ′ is a number between 1 and the average number of patterns per rule [6]. Further-
more, the performance of a Rete-based system also depends on the number of partial
matches generated by the rules, so badly written rules may exhibit poor performance.
Performance of join computations for each rule can be tweaked to trade off memory
usage against speed of computation. The usual messaging system performance tests
include scalability for destinations (topics and queues), publishers and subscribers in
terms of number of messages per second throughput. MantaRay’s P2P architecture re-
moves the concern over destination load as the destinations can be hosted on individual
peers. The performance of MantaRay depends on logging levels, persistence mecha-
nism choice and transport layer protocol. MantaRay supports database or file persis-
tence, with file persistence offering far superior throughput. Using file persistence in a

single queue or topic, with minimal logging and TCP connections, message rates be-
tween 6000 to 7000 per second have been reported in online discussion fora. It is also
worth mentioning that MantaRay is a lightweight solution; the transport layer may need
only 3 MB hard disk space.

Based on the above performance analysis, it is evident that these technologies,
while suitable for deployment on laptop devices, are too heavy-weight for resource
constrained devices such as PDAs. This could however be overcome using a proxy con-
figuration to a more powerful machine. As the event sources can implement the queues
and (for this scenario at least) the event notification rate is likely to be well within
the above bounds, scalability is no problem for MantaRay. Furthermore, (at least with
sensible rules) Jess can provide prompt feedback.

For evaluation of our monitor and interaction model we decided to follow a simu-
lation based approach, as this provides the necessary control over the environment for
varied experimentation. Simulation also has the benefit of being able to run a number
of experiments in a short time and removes the possibility of incurring real world dam-
age from running tests on a real implementation. Our approach involves simulation of a
number of application scenarios. So far we have concentrated on a distributed file server
scenario which we will outline below.

6.1 File Server Scenario

In our file server scenario, many users can subscribe to host files on many different
distributed file servers for a specific duration. This is an interesting scenario from the
point of view of the client trusting the server, as there is a rich set of clearly defined
aspects of server behaviour that can be witnessed and the interaction has a duration
that allows for continuous feedback. Furthermore, a number of interactions may be
ongoing at any one point in time (even with the same server), thus prompt feedback from
one interaction may be useful for decisions on others. First we define the trust events
that reflect aspects of server behaviour in terms of the outcome of an interaction. The
specific aspects used will depend on what the application developer deems important
for decision making. The aspects we have chosen are the availability of the server, the
latency of access, how well it protects the integrity of the hosted file, and how well it
maintains the confidentiality of the file.

From this set of aspects, the developer can define the set of events that represent an
outcome. The availability and latency aspects require quantified events to be defined,
with an associated measure, as the individual measure events that reflect these aspects
can be repeated. We model the other aspects as direct observable events. For example,
we assume that the integrity of a file is either maintained throughout or not, although a
different view could have been taken here to incorporate degrees of damage. We assume
that we can only directly observe a breach of confidentiality, as we can never say for sure
that confidentiality was maintained. Furthermore, we model whether the interaction
lasted the full duration or the file was removed early. We thus define the following trust
event and cost event types by extending the basic interaction model event types from
section 5:

– availability-qe with associated measure events available-me and unavailable-me
one of which is seen for any attempt to access the server.

– latency-qe with associated measure event latency-me with a latency parameter.
– integrity-undermined-event and integrity-maintained-event are conflicting; one

must always occur in an outcome.
– confidentiality-breached-event may or may not occur for any specific interaction.
– host-event and not-host-event are conflicting; no other events are seen if not-host-

event is received for an interaction.
– bad-xnend-event and good-xnend-event are conflicting; one must be seen to sig-

nify the end of an interaction.
– cxn-cost-changed-event has a cxn-cost-change parameter to represent the change

in connection costs when changing, for example, from a broadband connection to
dail-up.

– file-update-event has a file-value-change parameter to show the effects, for exam-
ple, of updating a file with critical data.

As a Jess code example, consider the following which shows the extension of a
generic cost event to give the file-value-event template:

(deftemplate cost-event extends event
(slot appID (default "GLOBAL"))
(slot xnID (default "GLOBAL"))
(slot trusteeID (default "GLOBAL")))

(deftemplate file-update-event extends cost-event
(slot file-value-change))

The event definitions described here, which capture the interaction model for an
application, are passed to the monitor when the application registers with the monitor,
via a batch file of Jess code. This file also contains other set up information, including
the definition of an fs-interaction fact that extends the basic interaction fact to include a
fileID and file-value, and latency-measure and availability-measure facts that extend
the basic measure fact to link the relevant measure events to the relevant quantified
events. The final part of this file contains rules triggered on the cost events to update the
outcome costs. Once this file has run, a rule set for feedback can be defined.

6.2 The Simulation

Based on the file server scenario described in section 6.1, we have developed a simu-
lation environment to provide an experimental platform for the evaluation of the moni-
tor prototype. The simulation (outlined in more detail in [3]) comprises an application
component and a file server component that can be instantiated on a number of remote
machines, to provide a realistic environment in which to test the monitor and interaction
model. Both the application component and the file servers are JMS enabled through
individual Mantaray transport layers. Queues are used for communicating most events
for privacy, with only the global cxn-cost-changed-events passed via topics.
The file server exports an RMI interface for file hosting and subsequent file operations
from which server behaviour can be observed (see figure 3).

APPLICATION
configure(profile)

host(xnID,file,dur'n,qname)

read(xnID)
write(xnID,file)

terminate(xnID)

Interaction Manager

Messenger Layer
Q TOPICQ Q QQ

FILE SERVER
FS Manager

Messenger Layer
Q Q Q QQ

Data Structures

Behavior Controller

File Map Q Map

Event Generator
IDS

Data Structures

Xn Map

Server Map

Q Map

CxnCost

Interaction Initializer

Interaction Controller

Rules, Facts, Sources

Event
Generator

Network
Simulator

update(xnID,value,checksum)
probeModified(xnID)
probeAccessed(xnID)
probeChecksum (xnID)

ping()

listFiles ()

Fig. 3. The File Server and Application.

In order to keep the file servers lightweight for the simulation, we define file ob-
jects rather than create real files for storage. These encapsulate the file’s ID, a file
value, an integrity checksum and last modified and accessed timestamps. File servers
store these file objects and perform a number of actions upon them based on a behav-
ioural profile configured through the interface. This profile influences server behaviour
on each aspect of latency, availability, integrity and confidentiality. The Behavioural
Controller component uses these profiles to determine thresholds for certain behav-
iours, continually iterating over the currently hosted files and acting upon them in a
number of ways. This includes generating confidentiality-breach-events
and integrity-undermined-events for an interaction via the Event Genera-
tor, simulating an intrusion detection system (IDS) and disk corruption notifications.
The Behaviour Controller can also alter a file’s checksum, value or timestamps without
generating an event, leaving the application to discover faults as a result of later method
calls. Further to this, latency profiles influence the amount of delay added to operations
to simulate a slow or overloaded server and availability profiles influence the chance of
an UnavailableException being thrown by remote methods.

All the events defined in the file server interaction model may also be generated
by the application based on the results of file operations when compared to a local
file store. Once the application’s Interaction Initialiser has hosted a file and initiated
monitoring for the interaction, the Interaction Controller is responsible for iteratively
executing file actions in the set of current interactions. To enable events to be generated
from file operations, it provides wrapper methods around each of the remote method
calls such that the relevant return values can be compared to the local store. The rele-
vant JMS map messages are generated and sent to the monitor queue. Common wrapper
functionality includes recording the time delay for a method call in order to generate
a latency-me from any successful access. This means an available-me can be
generated, but wrappers also catch UnavailableExceptions in order to gener-
ate unavailable-mes. The wrapper methods also update local storage as necessary

based on return values from RMI calls. Additionally, each wrapper method also calls
the Network Simulator subcomponent to simulate how the current network type will
affect the call. This component periodically changes to a new random connection type,
selecting from dail-up modem, broadband, LAN or WLAN, each of which introduces
different network delays and changes the application’s connection cost. This change
triggers a cxn-cost-changed-event, which is global rather than belonging to
a specific interaction and is thus published to a topic rather than queue. The connec-
tion cost, along with the value of a new file and hosting costs allows newly initialised
interactions to be assigned realistic outcome-costs at start up.

6.3 Preliminary Results

The file server scenario has the scope, duration and complexity to permit a variety of
interesting experiments to be defined. To give a taste of the kind of experiments, we
consider a situation where feedback is desired when the integrity of any file from the
application is undermined on a server. In this case, feedback tells the application to
terminate all of its interactions with this server. We can express such a rule in the Jess
language, using our generic functions as follows:

(defrule preliminary-experiment (integrity-undermined-event
(appID "fileserverapplication")(xnID ?xn)(trusteeID ?server))
=> (notify-xn-app ?xn (str-cat "TERMINATE-ALL:" ?server)))

To evaluate the usefulness of this rule, the simulation models a storage fault that
gradually propagates through the server affecting more and more files on the way. The
server does not notify of any of the integrity breaches and the application must do so
when it discovers the problem. The evaluation compares the number of files corrupted
on file server when no rule is specified, then runs a trace replay with the rule to deter-
mine how many files were saved by early removal, one file at a time. The experiment is
run with 100 files at different speeds of corruption propagation, the averages number of
corrupted files from 5 runs at each speed seen in figure 4.

0.1

1

10

100

10 30 50 70

No. of actions between file corruptions

Av
era

ge
 no

. o
f fi

les
 co

rru
pte

d

Without rule
With rule
Post feedback

Fig. 4. File corruption experimental results

As can be seen, the number of files saved is is proportional to the frequency of
corruption, and in each case around 84% of files were saved, with around 35% of the
corruptions occurring after the first termination call.

7 Conclusions and Future Work

We have presented our model of interaction, a monitor architecture and a prototype
implementation. Together these support detailed evidence collection during trust-based
interactions and can guide a decision process by providing useful, relevant, detailed
feedback promptly and in an automated manner. While the model requires the developer
to put in more effort to define a particular type of interaction up front, this alleviates the
burden on the user at runtime to provide detailed feedback. Our evaluation is still in
the preliminary stages, but as seen in section 4, our monitor can provide useful and
prompt feedback. We intend to continue validating the monitor using more rules in the
file server scenario and also using other scenarios within a more realistic context.

References
1. A. Abdul-Rahman and S. Hailes. Supporting trust in virtual communities. In Proceedings

of the 33rd Hawaii International Conference on System Sciences-Volume 6. IEEE Computer
Society Press, January 2000.

2. Mariano Cilia, Christof Bornhovd, and Alejandro P. Buchmann. Moving active functional-
ity from centralized to open distributed heterogeneous environments. In CooplS ’01: Pro-
ceedings of the 9th International Conference on Cooperative Information Systems, pages
195–210. Springer-Verlag, 2001.

3. Colin English and Sotirios Terzis. Monitoring interactions between trusting entities
A Simulation-based Analysis. Technical Report 02 (to appear), University of Strathclyde,
Computer and Information Sciences, December 2005.

4. Colin English, Sotirios Terzis, and Paddy Nixon. Towards self-protecting ubiquitous sys-
tems: monitoring trust-based interactions. Personal and Ubiquitous Computing, November
2005.

5. V. Cahill et al. Using Trust for Secure Collaboration in Uncertain Environments. In Pervasive
Computing Magazine, volume 2, pages 52–61. IEEE Computer Society Press, 2003.

6. Ernest Friedman-Hill. Jess in Action. Manning Publications, 2003.
7. The Mandarax Project Homepage. http://mandarax.sourceforge.net/.
8. The Mantaray Project Homepage. http://www.mantamq.org/.
9. The RuleCore System Homepage. http://www.rulecore.com/.

10. Adun Jøsang, Elizabeth Gray, and Michael Kinateder. Analysing topologies of transitive
trust. In Theo Dimitrakos and Fabio Martielli, editors, Proceedings of the Workshop on
Formal Aspects of Security and Trust (FAST2003) at FM2003, volume TR-10/2003 of IIT
Technical Reports, pages 9–22, Pisa, Italy, September 2003.

11. Mogens Nielsen and Karl Krukow. On the formal modelling of trust in reputation-based
systems. In J. Karhumki, H. Maurer, G. Paun, and G. Rozenberg, editors, Theory is Forever:
Essays Dedicated to Arto Salomaa, volume 3113 of LNCS, pages 192–204. Springer, 2004.

12. Norman Paton and Oscar Diaz. Active database systems. ACM Computing Surveys, 31:63–
103, March 1999.

13. Sotirios Terzis, Waleed Wagealla, Colin English, and Paddy Nixon. Trust lifecycle man-
agement in a global computing environment. In C. Priami and P. Quaglia, editors, Post-
Proceedings of the Global Computing 2004 Workshop, volume 3267 of LNCS, Roveretto,
Italy, 2004. Springer.

14. Li Xiong and Ling Liu. A reputation-based trust model for peer-to-peer ecommerce commu-
nities. In Proceedings of the 4th ACM conference on Electronic commerce, pages 228–229,
San Diego, CA, USA, 2003. ACM Press.

