7 research outputs found

    A plasmid library of full-length zebrafish rab proteins forcell biology

    No full text
    The zebrafish is an emerging model for highly sophisticated medium-throughput experiments such as genetic and chemical screens. However, studies of entire protein families within this context are often hampered by poor genetic resources such as clone libraries. Here we describe a complete collection of 76 full-length open reading frame clones for the zebrafish rab protein family. While the mouse genome contains 60 rab genes and the human genome 63, we find that 18 zebrafish rab genes have 2, and in the case of rab38, 3 paralogues. In contrast, we were unable to identify zebrafish orthologues of the mammalian Rab2b, Rab17 or Rab29. We make this resource available through the Addgene repository to facilitate cell biologic approaches using this model

    Investigation of Dynamic Fracture Behavior of Additively Manufactured Al-10Si-Mg using High-Speed Synchrotron X-Ray Imaging

    No full text
    The dynamic tensile properties of additively manufactured (AM) and cast Al-10Si-Mg alloy were investigated using high-speed synchrotron X-ray imaging coupled with a modified Kolsky bar apparatus. A controlled tensile loading (strain rate ≈ 750 s-1) was applied using the Kolsky bar apparatus and the deformation and fracture behavior were recorded using the high-speed X-ray imaging setup. The synchrotron X-ray computed tomography (CT) and high-speed imaging results worked together to identify the location of the critical flaw and to capture the dynamics of crack propagation. In all experiments, the critical flaw was located on the surface of each specimen. The AM specimens showed significantly higher crack propagation speed, yield strength, ultimate tensile strength, strain hardening coefficient, and yet lower ductility compared to the cast specimens under dynamic tension. Although the strength values were higher for the AM specimens, the critical mode I stress intensity factors were comparable for both specimens. The microstructures of the samples were characterized by CT and scanning electron microcopy. The correlation between the dynamic fracture behavior of the samples and the microstructure of the samples is analyzed and discussed

    Predictions and Measurements of Thermal Conductivity of Ceramic Materials at High Temperature

    Full text link
    The lattice thermal conductivity (κ\kappa) of two ceramic materials, cerium dioxide (CeO2_2) and magnesium oxide (MgO), is computed up to 1500 K using first principles and the phonon Boltzmann Transport Equation (PBTE) and compared to time-domain thermoreflectance (TDTR) measurements up to 800 K. Phonon renormalization and the four-phonon effect, along with high temperature thermal expansion, are integrated in our \textit{ab initio} molecular dynamics (AIMD) calculations. This is done by first relaxing structures and then fitting to a set of effective force constants employed in a temperature-dependent effective potential (TDEP) method. Both three-phonon and four-phonon scattering rates are computed based on these effective force constants. Our calculated thermal conductivities from the PBTE solver agree well with literature and our TDTR measurements. Other predicted thermal properties including thermal expansion, frequency shift, and phonon linewidth also compare well with available experimental data. Our results show that high temperature softens phonon frequency and reduces four-phonon scattering strength in both ceramics. Compared to MgO, we find that CeO2_2 has weaker four-phonon effect and renormalization greatly reduces its four-phonon scattering rates

    Cavin4 interacts with Bin1 to promote T-tubule formation and stability in developing skeletal muscle

    No full text
    The cavin proteins are essential for caveola biogenesis and function. Here, we identify a role for the muscle-specific component, Cavin4, in skeletal muscle T-tubule development by analyzing two vertebrate systems, mouse and zebrafish. In both models, Cavin4 localized to T-tubules, and loss of Cavin4 resulted in aberrant T-tubule maturation. In zebrafish, which possess duplicated cavin4 paralogs, Cavin4b was shown to directly interact with the T-tubule–associated BAR domain protein Bin1. Loss of both Cavin4a and Cavin4b caused aberrant accumulation of interconnected caveolae within the T-tubules, a fragmented T-tubule network enriched in Caveolin-3, and an impaired Ca2+ response upon mechanical stimulation. We propose a role for Cavin4 in remodeling the T-tubule membrane early in development by recycling caveolar components from the T-tubule to the sarcolemma. This generates a stable T-tubule domain lacking caveolae that is essential for T-tubule function.</p

    KBTBD13 is an actin-binding protein that modulates muscle kinetics

    No full text
    The mechanisms that modulate the kinetics of muscle relaxation are critically important for muscle function. A prime example of the impact of impaired relaxation kinetics is nemaline myopathy caused by mutations in KBTBD13 (NEM6). In addition to weakness, NEM6 patients have slow muscle relaxation, compromising contractility and daily life activities. The role of KBTBD13 in muscle is unknown, and the pathomechanism underlying NEM6 is undetermined. A combination of transcranial magnetic stimulation-induced muscle relaxation, muscle fiber- and sarcomere-contractility assays, low-angle x-ray diffraction, and superresolution microscopy revealed that the impaired muscle-relaxation kinetics in NEM6 patients are caused by structural changes in the thin filament, a sarcomeric microstructure. Using homology modeling and binding and contractility assays with recombinant KBTBD13, Kbtbd13-knockout and Kbtbd13R408C-knockin mouse models, and a GFP-labeled Kbtbd13-transgenic zebrafish model, we discovered that KBTBD13 binds to actin - a major constituent of the thin filament - and that mutations in KBTBD13 cause structural changes impairing muscle-relaxation kinetics. We propose that this actin-based impaired relaxation is central to NEM6 pathology

    KBTBD13 is an actin-binding protein that modulates muscle kinetics

    Get PDF
    International audienceThe mechanisms that modulate the kinetics of muscle relaxation are critically important for muscle function. A prime example of the impact of impaired relaxation kinetics is nemaline myopathy caused by mutations in KBTBD13 (NEM6). In addition to weakness, NEM6 patients have slow muscle relaxation, compromising contractility and daily life activities. The role of KBTBD13 in muscle is unknown, and the pathomechanism underlying NEM6 is undetermined. A combination of transcranial magnetic stimulation-induced muscle relaxation, muscle fiber- and sarcomere-contractility assays, low-angle x-ray diffraction, and superresolution microscopy revealed that the impaired muscle-relaxation kinetics in NEM6 patients are caused by structural changes in the thin filament, a sarcomeric microstructure. Using homology modeling and binding and contractility assays with recombinant KBTBD13, Kbtbd13-knockout and Kbtbd13R408C-knockin mouse models, and a GFPlabeled Kbtbd13-transgenic zebrafish model, we discovered that KBTBD13 binds to actin - a major constituent of the thin filament - and that mutations in KBTBD13 cause structural changes impairing muscle-relaxation kinetics. We propose that this actin-based impaired relaxation is central to NEM6 pathology
    corecore