23 research outputs found

    A Mini Review on Sewage Sludge and Red Mud Recycling for Thermal Energy Storage

    Get PDF
    Sewage sludge and red mud, as common industrial waste, have become a research hotspot in the field of achieving carbon peaking and carbon neutrality, reducing carbon emissions, and solving environmental problems. However, their treatment and disposal have always been a difficult problem in the environmental field. Utilizing these two materials for thermal energy storage can not only improve energy utilization efficiency but also further reduce carbon emissions during their treatment process, providing a new approach for sustainable development in the industrial sector. This article summarizes the research progress for the resource recovery of sewage sludge and red mud for direct thermal energy recovery and composite phase change energy storage. After proper treatment, sludge and red mud can be directly used as energy storage materials. In addition, sludge and red mud can be combined with phase change materials to prepare composite materials with an excellent energy storage performance. This composite has broad application prospects in fields such as solar energy utilization and building energy efficiency. However, there are still some challenges and issues in this resource recovery and utilization, such as potential environmental pollution during the treatment process, the long-term stability of energy storage materials, and cost-effectiveness, which require further research and resolution. The purpose of this paper is to evaluate the potential of sewage sludge and red mud as energy storage materials, to explore their feasibility and advantages in practical applications, and to reveal the research progress, technical challenges, and future development directions of these two materials in the field of thermal energy storage

    Enclave-Reinforced Inequality during the COVID-19 Pandemic: Evidence from University Campus Lockdowns in Wuhan, China

    Get PDF
    From MDPI via Jisc Publications RouterHistory: accepted 2021-11-23, pub-electronic 2021-11-26Publication status: PublishedFunder: China Prosperity Fund Programme; Grant(s): PF3051 CH-WS3HBUE YR1Funder: Ministry of Education; Grant(s): 20YJC630149The COVID-19 pandemic has impacted urban life and created spatial and social inequalities in cities. The impacts of lifting full lockdown restrictions once fast-spreading and community-acquired infection waves were under control are still not fully understood. This study aims to explore spatial inequality reinforced in the intervals between the waves of infection during the COVID-19 pandemic. Enclave-reinforced inequality resulting from enclave-based lockdown policies in Chinese cities was investigated through an analysis of the impacts of university campus enclave closures on the accessibility and crowdedness of urban green spaces. Using a modified two-step floating catchment area (2SFCA) and inversed 2SFCA (i2SFCA) method, accessibility and crowdedness were calculated and compared under two different scenarios. Additionally, the Lorenz curve, Gini coefficient, and Theil index were used to measure and compare intra-city global and local inequalities under each scenario. The results indicate that the lockdown of university campus enclaves decreased the supply of urban green spaces. Campus closures not only exacerbated the unequal distribution of urban green space, but also reduced the inequality of crowdedness in urban parks due to increased crowdedness in parks near the closed enclaves. Moreover, both accessibility and crowdedness worsened when the calculations were weighted for population size and the total supply of green space. Enclave-based lockdown in cities reinforced spatial inequality, and it is highly complex and has multidimensional impacts on urban inequalities and environmental injustice which should be considered by urban planners and decision-makers hoping to create healthy, inclusive, resilient, and sustainable cities in the “new normal” of the COVID-19 pandemic

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    Methylprednisolone as Adjunct to Endovascular Thrombectomy for Large-Vessel Occlusion Stroke

    Get PDF
    Importance It is uncertain whether intravenous methylprednisolone improves outcomes for patients with acute ischemic stroke due to large-vessel occlusion (LVO) undergoing endovascular thrombectomy. Objective To assess the efficacy and adverse events of adjunctive intravenous low-dose methylprednisolone to endovascular thrombectomy for acute ischemic stroke secondary to LVO. Design, Setting, and Participants This investigator-initiated, randomized, double-blind, placebo-controlled trial was implemented at 82 hospitals in China, enrolling 1680 patients with stroke and proximal intracranial LVO presenting within 24 hours of time last known to be well. Recruitment took place between February 9, 2022, and June 30, 2023, with a final follow-up on September 30, 2023.InterventionsEligible patients were randomly assigned to intravenous methylprednisolone (n = 839) at 2 mg/kg/d or placebo (n = 841) for 3 days adjunctive to endovascular thrombectomy. Main Outcomes and Measures The primary efficacy outcome was disability level at 90 days as measured by the overall distribution of the modified Rankin Scale scores (range, 0 [no symptoms] to 6 [death]). The primary safety outcomes included mortality at 90 days and the incidence of symptomatic intracranial hemorrhage within 48 hours. Results Among 1680 patients randomized (median age, 69 years; 727 female [43.3%]), 1673 (99.6%) completed the trial. The median 90-day modified Rankin Scale score was 3 (IQR, 1-5) in the methylprednisolone group vs 3 (IQR, 1-6) in the placebo group (adjusted generalized odds ratio for a lower level of disability, 1.10 [95% CI, 0.96-1.25]; P = .17). In the methylprednisolone group, there was a lower mortality rate (23.2% vs 28.5%; adjusted risk ratio, 0.84 [95% CI, 0.71-0.98]; P = .03) and a lower rate of symptomatic intracranial hemorrhage (8.6% vs 11.7%; adjusted risk ratio, 0.74 [95% CI, 0.55-0.99]; P = .04) compared with placebo. Conclusions and Relevance Among patients with acute ischemic stroke due to LVO undergoing endovascular thrombectomy, adjunctive methylprednisolone added to endovascular thrombectomy did not significantly improve the degree of overall disability.Trial RegistrationChiCTR.org.cn Identifier: ChiCTR210005172

    Quality analysis of the campaign GPS stations observation in Northeast and North China

    Get PDF
    TEQC is used to check the observations quality of 173 GPS campaign stations in the Northeast and North China. Each station was observed with an occupation of 4 days. The quality of the 692 data files is analyzed by the ratio of overall observations to possible observations, MP1, MP2 and the ratio of observations to slips. The reasons for multipath and cycle slips can be derived from the photos taken in the field. The results show that the coverage of trees and buildings/structures, and the interference of high-voltage power lines near the stations are the main reasons. In a small area, the horizontal velocity field in the period 2011–2013 is exemplified, where the magnitudes and directions of the 4 stations' rates are clearly different with that of other stations. It seems that the error caused by the worse environment cannot be mitigated through post processing. Therefore, these conclusions can help the establishment of GNSS stations, measurements, data processing and formulating standards in future

    Enclave-Reinforced Inequality during the COVID-19 Pandemic: Evidence from University Campus Lockdowns in Wuhan, China

    No full text
    The COVID-19 pandemic has impacted urban life and created spatial and social inequalities in cities. The impacts of lifting full lockdown restrictions once fast-spreading and community-acquired infection waves were under control are still not fully understood. This study aims to explore spatial inequality reinforced in the intervals between the waves of infection during the COVID-19 pandemic. Enclave-reinforced inequality resulting from enclave-based lockdown policies in Chinese cities was investigated through an analysis of the impacts of university campus enclave closures on the accessibility and crowdedness of urban green spaces. Using a modified two-step floating catchment area (2SFCA) and inversed 2SFCA (i2SFCA) method, accessibility and crowdedness were calculated and compared under two different scenarios. Additionally, the Lorenz curve, Gini coefficient, and Theil index were used to measure and compare intra-city global and local inequalities under each scenario. The results indicate that the lockdown of university campus enclaves decreased the supply of urban green spaces. Campus closures not only exacerbated the unequal distribution of urban green space, but also reduced the inequality of crowdedness in urban parks due to increased crowdedness in parks near the closed enclaves. Moreover, both accessibility and crowdedness worsened when the calculations were weighted for population size and the total supply of green space. Enclave-based lockdown in cities reinforced spatial inequality, and it is highly complex and has multidimensional impacts on urban inequalities and environmental injustice which should be considered by urban planners and decision-makers hoping to create healthy, inclusive, resilient, and sustainable cities in the “new normal” of the COVID-19 pandemic

    Sponge-like Chitosan Based Porous Monolith for Uraemic Toxins Sorption

    No full text
    More than three million patients are treated for kidney failure world-wide. Haemodialysis, the most commonly used treatment, requires large amounts of water and generates mountains of non-recyclable plastic waste. To improve the environmental footprint, dialysis treatments need to develop absorbents to regenerate the waste dialysate. Whereas conventional dialysis clears water-soluble toxins, it is not so effective in clearing protein-bound uraemic toxins (PBUTs), such as indoxyl sulfate (IS). Thus, developing absorption devices to remove both water-soluble toxins and PBUTs would be advantageous. Vapour induced phase separation (VIPS) has been used in this work to produce polycaprolactone/chitosan (PCL/CS) composite symmetric porous monoliths with extra porous carbon additives to increase creatinine and albumin-bound IS absorption. Moreover, these easy-to-fabricate porous monoliths can be formed into the required geometry. The PCL/CS porous monoliths absorbed 436 ÎĽg/g of albumin-bound IS and 2865 ÎĽg/g of creatinine in a single-pass perfusion model within 1 h. This porous PCL/CS monolith could potentially be used to absorb uraemic toxins, including PBUTs, and thus allow the regeneration of waste dialysate and the development of a new generation of environmentally sustainable dialysis treatments, including wearable devices

    Numerical and Experimental Study on Energy Performance of Photovoltaic-Heat Pipe Solar Collector in Northern China

    Get PDF
    Several studies have found that the decrease of photovoltaic (PV) cell temperature would increase the solar-to-electricity conversion efficiency. Water type PV/thermal (PV/T) system was a good choice but it could become freezing in cold areas of Northern China. This paper proposed a simple combination of common-used PV panel and heat pipe, called PV-heat pipe (PV-HP) solar collector, for both electrical and thermal energy generation. A simplified one-dimensional steady state model was developed to study the electrical and thermal performance of the PV-HP solar collector under different solar radiations, water flow rates, and water temperatures at the inlet of manifold. A testing rig was conducted to verify the model and the testing data matched very well with the simulation values. The results indicated that the thermal efficiency could be minus in the afternoon. The thermal and electrical efficiencies decreased linearly as the inlet water temperature and water flow rate increased. The thermal efficiency increased while the electrical efficiency decreased linearly as the solar radiation increased

    Acoustics-Actuated Microrobots

    No full text
    Microrobots can operate in tiny areas that traditional bulk robots cannot reach. The combination of acoustic actuation with microrobots extensively expands the application areas of microrobots due to their desirable miniaturization, flexibility, and biocompatibility features. Herein, an overview of the research and development of acoustics-actuated microrobots is provided. We first introduce the currently established manufacturing methods (3D printing and photolithography). Then, according to their different working principles, we divide acoustics-actuated microrobots into three categories including bubble propulsion, sharp-edge propulsion, and in-situ microrotor. Next, we summarize their established applications from targeted drug delivery to microfluidics operation to microsurgery. Finally, we illustrate current challenges and future perspectives to guide research in this field. This work not only gives a comprehensive overview of the latest technology of acoustics-actuated microrobots, but also provides an in-depth understanding of acoustic actuation for inspiring the next generation of advanced robotic devices

    Experimental Study on the Performance of a Phase Change Slurry-Based Heat Pipe Solar Photovoltaic/Thermal Cogeneration System

    No full text
    By employing phase change slurry (PCS) as working fluid for the heat pipe solar PV/T system, the study is designed to investigate the electrical and thermal energy performance of the system. Meanwhile, through examining the performance difference between water-based and PCS-based heat pipe solar PV/T systems, 30% alkyl hydrocarbon PCS is proved to be a suitable working fluid for optimized energy performance based on the combined consideration of the thermophysical and rheological properties. Both static and dynamic stability tests show that 30% alkyl hydrocarbon PCS has a good stability for low-temperature thermal energy storage. A testing rig is constructed consisting of two identical heat pipe solar PV/T cogeneration systems A and B, in which water and 30% alkyl hydrocarbon PCS are, respectively, employed as working fluids; the energy performance of those two PV/T systems are investigated and compared with each other under the same testing condition. The results indicate that the application of PCS to the heat pipe PV/T system leads to a significant improvement in thermal performance and a modest growth in electrical performance. The daily heat gains and overall average efficiency of system B are 4.2 MJ/m2 (per unit area of PV/T panel) and 59.3%, respectively, 27.3% and 9.3% higher than those of system A. Per unit area of the heat pipe PV/T panel could produce 55.2 L domestic hot water of about 45°C on a sunny day
    corecore