78 research outputs found

    Cloud manufacturing architecture: a critical analysis of its development, characteristics and future agenda to support its adoption

    Get PDF
    Purpose: In the last decade, cloud manufacturing (CMfg) has attracted considerable attention from academia and industry worldwide. It is widely accepted that the design and analysis of cloud manufacturing architecture (CMfg-A) are the basis for developing and applying CMfg systems. However, in existing studies, analysis of the status, development process and internal characteristics of CMfg-A is lacking, hindering an understanding of the research hotspots and development trends of CMfg-A. Meanwhile, effective guidance is lacking on the construction of superior CMfg-As. The purpose of this paper is to review the relevant research on CMfg-A via identification of the main layers, elements, relationships, structure and functions of CMfg-A to provide valuable information to scholars and practitioners for further research on key CMfg-A technologies and the construction of CMfg systems with superior performance. Design/methodology/approach: This study systematically reviews the relevant research on CMfg-A across transformation process to internal characteristics by integrating quantitative and qualitative methods. First, the split and reorganization method is used to recognize the main layers of CMfg-A. Then, the transformation process of six main layers is analysed through retrospective analysis, and the similarities and differences in CMfg-A are obtained. Subsequently, based on systematic theory, the elements, relationships, structure and functions of CMfg-A are inductively studied. A 3D printing architecture design case is conducted to discuss the weakness of the previous architecture and demonstrate how to improve it. Finally, the primary current trends and future opportunities are presented. Findings: By analyzing the transformation process of CMfg-A, this study finds that CMfg-A resources are developing from tangible resources into intangible resources and intelligent resources. CMfg-A technology is developing from traditional cloud computing-based technology towards advanced manufacturing technology, and CMfg-A application scope is gradually expanding from traditional manufacturing industry to emerging manufacturing industry. In addition, by analyzing the elements, relationships, structure and functions of CMfg-A, this study finds that CMfg-A is undergoing a new generation of transformation, with trends of integrated development, intelligent development, innovative development and green development. Case study shows that the analysis of the development trend and internal characteristics of the architecture facilitates the design of a more effective architecture. Research limitations/implications: This paper predominantly focuses on journal articles and some key conference papers published in English and Chinese. The reason for considering Chinese articles is that CMfg was proposed by the Chinese and a lot of Chinese CMfg-A articles have been published in recent years. CMfg is suitable for the development of China’s manufacturing industry because of China’s intelligent manufacturing environment. It is believed that this research has reached a reliable comprehensiveness that can help scholars and practitioners establish new research directions and evaluate their work in CMfg-A. Originality/value: Prior studies ignore the identification and analysis of development process and internal characteristics for the current development of CMfg-A, including the main layers identification of different CMfg-As and the transformation process analysis of these main layers, and in-depth analysis of the inner essence of CMfg-A (such as its elements, relationships, structure and functions). This study addresses these limitations and provides a comprehensive literature review

    Correlation analysis between Scr,hs-cTnT,NT-proBNP and major cardiovascular adverse events in patients with burn injury

    Get PDF
    Objective To investigate the correlation between serum creatinine(Scr),high-sensitivity troponin T(hs-cTnT),N-terminal pro-B-type natriuretic peptide(NT-proBNP),and in-hospital major adverse cardiovascular events(MACE)in burn patients and evaluate their predictive value. Methods In this retrospective study,254 burn patients were enrolled and divided into the MACE group(n = 85)and non-MACE group(n = 169)according to whether MACE occurred during hospital stay. Clinical baseline data and laboratory indexes were statistically compared between the two groups. The predictive values of Scr,hs-cTnT,and NT-proBNP for in-hospital MACE in burn patients were assessed by the receiver operating characteristic(ROC)curve. Results Compared with the non-MACE group,older age,larger total area of burns,and higher levels of Scr,hs-cTnT,NT-proBNP,and cystatin C were observed in the MACE group(all P < 0.05). There were significant differences in gender,history of hypertension,sepsis,and smoking history between the two groups(all P < 0.05). Multivariate analysis showed that Scr,hs-cTnT,and NT-proBNP were the independent risk factors for nosocomial MACE in burn patients(all P < 0.05). The area under the curve(AUC)values of Scr,hs-cTnT,NT-proBNP,and their combined prediction of MACE were 0.743,0.802,0.733,and 0.801 by ROC curve analysis. According to the DeLong test results,the AUC value of MACE predicted by the three combined was more significant than the value indicated by Scr alone(Z value = 2.897,P = 0.003). The predictive value of Scr,hs-cTnT,and NT-proBNP for MACE was not significantly different(Z values were 1.398,0.202,and 1.900,and P values were 0.162,0.840,and 0.057,respectively). Subgroup analysis showed that the incidence of MACE in burn patients in the hs-cTnT≥0.014 5 μg/L group was higher than in their counterparts in the hs-cTnT < 0.014 5 μg/L group(P < 0.05). Spearman correlation analysis showed a positive correlation between hs-cTnT level and the severity of burns(P < 0.05). Conclusions Scr,hs-cTnT,and NT-proBNP are the independent risk factors for nosocomial MACE in burn patients and have good predictive values. In addition,hs-cTnT level is correlated with the severity of burns

    Regrowth-free AlGaInAs MQW polarization controller integrated with sidewall grating DFB laser

    Full text link
    We report an AlGaInAs multiple quantum well integrated source of polarization controlled light consisting of a polarization mode converter PMC, differential phase shifter(DPS), and a side wall grating distributed-feedback DFB laser. We demonstrate an asymmetrical stepped-height ridge waveguide PMC to realize TE to TM polarization conversion and a symmetrical straight waveguide DPS to enable polarization rotation from approximately counterclockwise circular polarization to linear polarization. Based on the identical epitaxial layer scheme, all of the PMC, DPS, and DFB laser can be integrated monolithically using only a single step of metalorganic vapor phase epitaxy and two steps of III V material dry etching. For the DFB-PMC device, a high TE to TM polarization conversion efficiency 98% over a wide range of DFB injection currents is reported at 1555 nm wavelength. For the DFB-PMC-DPS device, a 60 degree rotation of the Stokes vector was obtained on the Poincar\'e sphere with a range of bias voltage from 0 V to -4.0 V at IDFB is 170 mA.Comment: arXiv admin note: text overlap with arXiv:2210.1051

    Stepped-height ridge waveguide MQW polarization mode converter monolithically integrated with sidewall grating DFB laser

    Full text link
    We report the first demonstration of a 1555 nm stepped-height ridge waveguide polarization mode converter monolithically integrated with a side wall grating distributed-feedback (DFB) laser using the identical epitaxial layer scheme. The device shows stable single longitudinal mode (SLM) operation with the output light converted from TE to TM polarization with an efficiency of >94% over a wide range of DFB injection currents (IDFB) from 140 mA to 190 mA. The highest TM mode purity of 98.2% was obtained at IDFB=180 mA. A particular advantage of this device is that only a single step of metalorganic vapor-phase epitaxy and two steps of III-V material dry etching are required for the whole integrated device fabrication, significantly reducing complexity and cost

    Scattering Field Enhanced Biosensing Based on Sub-wavelength Split-ring Plasmonic Cavity With High Q-factor

    Get PDF
    Plasmonic structures are widely used in modern biosensor design. various plasmonic resonant cavities could efficiently achieve a high Q-factor, improving the local field intensity to enhance photoluminescence or SERS (Surface-Enhanced Raman Scattering) of small molecules. Also, the combination between virus-like particles and plasmonic structures could significantly influence the scattering spectrum and field, which is utilized as a method for biological particle detection. In this paper, we designed one kind of gold plasmonic cavity with the shape of a split-ring. An edge gap and a bonus center bulge are introduced in the split-ring structure. Our simulation is based on Finite Difference Time Domain (FDTD) method. Polarization Indirect Microscopic Imaging (PIMI) technique is used here to detect far-field mode distribution under the resonant wavelength. The simulation results demonstrate resonant peaks in the visible spectrum at about 600 nm with a Q-factor reaches to 74. Localized hot spots are generated by an edge dipole mode and a cavity hexapole mode at resonant wavelength, which is according to dark points in the PIMI sinδ image. Also, the split-ring cavity shows a sensitivity when combined with biological particles. The scattering distribution is evidently changed as a result of energy exchange between particles and split-ring cavity, indicating a promising possibility for biosensing

    Stepped-height ridge waveguide MQW polarization mode converter monolithically integrated with sidewall grating DFB laser

    Get PDF
    We report the first demonstration of a 1555 nm stepped-height ridge waveguide polarization mode converter monolithically integrated with a side wall grating distributed-feedback (DFB) laser using the identical epitaxial layer scheme. The device shows stable single longitudinal mode (SLM) operation with the output light converted from TE to TM polarization with an efficiency of >94% over a wide range of DFB injection currents (IDFB) from 140 mA to 190 mA. The highest TM mode purity of 98.2% was obtained at IDFB=180 mA. A particular advantage of this device is that only a single step of metalorganic vapor-phase epitaxy and two steps of III-V material dry etching are required for the whole integrated device fabrication, significantly reducing complexity and cost

    Sub-wavelength visualization of near-field scattering mode of plasmonic nano-cavity in the far-field

    Get PDF
    Spatial visualization of mode distribution of light scattering from plasmonic nanostructures is of vital importance for understanding the scattering mechanism and applications based on these plasmonic nanostructures. A long unanswered question in how the spatial information of scattered light from a single plasmonic nanostructure can be recovered in the far-field, under the constraints of the diffraction limit of the detection or imaging optical system. In this paper, we reported a theoretical model on retrieving local spatial information of scattered light by plasmonic nanostructures in a far-field optical imaging system. In the far-field parametric sin δ images, singularity points corresponding to near-field hot spots of the edge mode and the gap mode were resolved for gold ring and split rings with subwavelength diameters and feature sizes. The experimental results were verified with Finite Difference Time Domain (FDTD) simulation in the near-field and far-field, for the edge mode and the gap mode at 566 nm and 534 nm, respectively. In sin δ image of split-ring, two singularity points associated with near-field hot spots were visualized and resolved with the characteristic size of 90 and 100 nm, which is far below the diffraction limit. The reported results indicate the feasibility of characterizing the spatial distribution of scattering light in the far-field and with sub-wavelength resolution for single plasmonic nanostructures with sub-wavelength feature sizes

    Baiji genomes reveal low genetic variability and new insights into secondary aquatic adaptations

    Get PDF
    The baiji, or Yangtze River dolphin (Lipotes vexillifer), is a flagship species for the conservation of aquatic animals and ecosystems in the Yangtze River of China; however, this species has now been recognized as functionally extinct. Here we report a high-quality draft genome and three re-sequenced genomes of L. vexillifer using Illumina short-read sequencing technology. Comparative genomic analyses reveal that cetaceans have a slow molecular clock and molecular adaptations to their aquatic lifestyle. We also find a significantly lower number of heterozygous single nucleotide polymorphisms in the baiji compared to all other mammalian genomes reported thus far. A reconstruction of the demographic history of the baiji indicates that a bottleneck occurred near the end of the last deglaciation, a time coinciding with a rapid decrease in temperature and the rise of eustatic sea level

    A three-tier programming model for service composition and optimal selection in cloud manufacturing

    No full text
    The process of service composition and optimal selection in cloud manufacturing (CMfg-SCOS) involves three types of users: service demanders, resource providers, and cloud platform operators. The interests of all users are a research focus of CMfg-SCOS, as their participation in the CMfg system directly affects the efficiency and long-term development of CMfg. However, the current research on CMfg-SCOS rarely considers the interests of all three types of users simultaneously, and the interest of resource providers is not clearly defined, which lags behind the reality of CMfg. Therefore, this study first proposes a three-tier programming model of CMfg-SCOS that considers the interests of service demanders, cloud platform operators, and resource providers. At the lower level of the model, service demanders are the decision makers, aiming to minimize time and cost and maximize service quality. At the middle level of the model, cloud platform operators are the decision makers, aiming to maximize resource use and flexibility in the face of uncertain environments. At the upper level, resource providers are the decision makers, aiming to maximize enterprise surplus. Then, this study develops an improved fast nondominated sorting genetic algorithm with advancement and inheritance (namely, a-i-NSGA-II) to solve the three-tier model efficiently. Numerical experiments conducted in this study found that in comparison to the art of state algorithms, including original nondominated sorting genetic algorithm II (NSGA-II), multiobjective particle swarm optimization (MOPSO), and multiobjective spotted hyena optimizer (MOSHO), the proposed a-i-NSGA-II has better diversity and comprehensive performance at the middle level of the model and better solution quality at the upper level. Furthermore, a case study of the actual production of an automobile fuel tank assembly enterprise verifies the effectiveness of the proposed model and algorithm
    corecore