66 research outputs found

    Observation of Hybrid Magnetic Skyrmion Bubbles in Fe3Sn2 Nanodisks

    Full text link
    It is well known that there are two types of magnetic bubbles in uniaxial magnets. Here, using Lorentz-transimission electronic microscopy magnetic imaging, we report the direct experimental observation of 3D type-III hybrid bubbles, which comprise N\'eel-twisted skyrmion bubbles with topological charge Q = -1 in near-surface layers and type-II bubbles with Q = 0 in interior layers, in Fe3Sn2 nanodisks. Using the tilted magnetic field, we further show the controlled topological magnetic transformations of three types of bubbles in a confined ferromagnetic nanodisk. Our observations are well reproduced using micromagnetic simulations based on measured magnetic parameters. Our results advance fundamental classification and understanding of magnetic bubbles, which could propel the applications of three-dimensional magnetism.Comment: https://doi.org/10.1103/PhysRevB.107.17442

    Current-Controlled Skyrmion Number in Confined Ferromagnetic Nanostripes

    Full text link
    Skyrmions are vortex-like localized magnetic structures that possess an integer-valued topological index known as the skyrmion number or topological charge. Skyrmion number determines the topology-related emergent magnetism, which is highly desirable for advanced storage and computing devices. In order to achieve device functions, it is necessary to manipulate the skyrmion number in confined nanostructured geometries using electrical methods. Here, we report the reliable current-controlled operations for manipulating the skyrmion number through reversible topological transformations between skyrmion chains and stripe domains in confined Fe3Sn2 nanostripes. The results of micromagnetic simulations are successful in numerically reproducing our experiments and explaining them through the combined effect of current-induced Joule heating and magnetic hysteresis. These findings hold the potential to advance the development of topological spintronic devices.Comment: https://doi.org/10.1002/adfm.20230404

    In vivo monitoring of microneedle-based transdermal drug delivery of insulin

    No full text
    Soluble microneedles (MNs) have recently become an efficient and minimally invasive tool in transdermal drug delivery because of their excellent biocompatibility and rapid dissolution. However, direct monitoring of structural and functional changes of MNs in vivo to estimate the efficiency of insulin delivery is difficult. We monitored the dissolution of MNs to obtain structural imaging of MNs’ changes by using optical coherence tomography (OCT). We also observed the effect of MNs on microvascular conditions with laser speckle contrast imaging (LSCI) and measured the blood perfusion of skin to obtain functional imaging of MNs. We determined the performance of two soluble MN arrays made from polyvinyl alcohol (PVA) and polyvinyl alcohol/polyvinylpyrolidone (PVA/PVP) by calculating the cross-sectional areas of the microchannels in mouse skin as a function of time. Moreover, the change in blood glucose before and after using MNs loaded with insulin was evaluated as an auxiliary means to demonstrate the ability of the soluble MNs to deliver insulin. Results showed that the structural imaging of these MNs could be observed in vivo via OCT in real time and the functional imaging of MNs could be showed using LSCI. OCT and LSCI are potential tools in monitoring MNs structural and functional changes

    Proteomic analysis of early salt stress responsive proteins in alfalfa roots and shoots

    No full text
    Abstract Background Alfalfa (Medicago sativa) is the most extensively cultivated forage legume in the world, and salinity stress is the most problematic environmental factors limiting alfalfa production. To evaluate alfalfa tissue variations in response to salt stress, comparative physiological and proteomic analyses were made of salt responses in the roots and shoots of the alfalfa. Method A two-dimensional gel electrophoresis (2-DE)-based proteomic technique was employed to identify the differentially abundant proteins (DAPs) from salt-treated alfalfa roots and shoots of the salt tolerance cultivars Zhongmu No 1 cultivar, which was subjected to a range of salt stress concentrations for 9 days. In parallel, REL, MAD and H2O2 contents, and the activities of antioxidant enzymes of shoots and roots were determinand. Result Twenty-seven spots in the shoots and 36 spots in the roots that exhibited showed significant abundance variations were identified by MALDI-TOF-TOF MS. These DAPs are mainly involved in the biological processes of photosynthesis, stress and defense, carbohydrate and energy metabolism, second metabolism, protein metabolism, transcriptional regulation, cell wall and cytoskeleton metabolism, ion transpor, signal transduction. In parallel, physiological data were correlated well with our proteomic results. It is worth emphasizing that some novel salt-responsive proteins were identified, such as CP12, pathogenesis-related protein 2, harvest-induced protein, isoliquiritigenin 2â€Č-O-methyltransferase. qRT-PCR was used to study the gene expression levels of the four above-mentioned proteins; four patterns are consistent with those of induced protein. Conclusion The primary mechanisms underlying the ability of alfalfa seedlings to tolerate salt stress were photosynthesis, detoxifying and antioxidant, secondary metabolism, and ion transport. And it also suggests that the different tissues responded to salt-stress in different ways

    Pyridinium-fused pyridinone : a novel “turn-on” fluorescent chemodosimeter for cyanide

    No full text
    A new chemodosimeter based on pyridinium-fused pyridinone iodide (PI) has been obtained through a “clean reaction” method. This compound can detect CN− in aqueous solution with a high selectivity and rapid response. The detection of CN− occurs through the nucleophilic attack of CN− on the C[DOUBLE BOND]N bond, which induces the destruction of the π-conjugation on the pyridinium ring. Support of this detection mechanism was obtained by 1H NMR titration, HR-MS, and DFT calculations. Upon the addition of 10 equivalents CN− to a solution of PI in THF/H2O (1:1, v/v), a 57-fold enhancement in fluorescence intensity was observed at the maximum emission wavelength of 457 nm. Meanwhile, the maximum absorption wavelength was also blue-shifted from 447 nm to 355 nm. Other common anions such as BF4−, PF6−, F−, Cl−, Br−, I−, H2PO4−, ClO4−, CH3COO−, NO2−, N3−, and SCN− had little effect on the detection of CN−. The response time of PI for CN− was less than 5 seconds. The detection limit was calculated to be 5.4×10−8 m, which is lower than the maximum permission concentration in drinking water (1.9 Όm) set by the World Health Organization (WHO)

    Effects of powder morphology on stereolithography additive manufactured Al2O3 ceramic

    No full text
    The digital light processing (DLP) for the preparation of alumina ceramics (Al2O3) is characterized by high molding accuracy and fast rates, making it show great promise for applications in high-end ceramic manufacturing. However, its forming process is greatly influenced by the photosensitive slurry. Although a large number of studies have been conducted to investigate the influence of different variables of the slurry on photo curing, the mechanism of the influence of the powder morphology of the Al2O3 raw material is still unclear. In this study, two kinds of slurry were prepared from spherical and laminated Al2O3 powders and DLP was carried out. The results showed that some of the spherical Al2O3 powder would break down after ball milling, resulting in a reduced flow-ability of the slurry. The relative density of the ceramic was 91.1 % and strength was 92.1 MPa. In contrast, the laminated Al2O3 could be oriented in the flow direction during flow, showing a lower viscosity. At the same time, the orientation allowed the lamellar powder to build up more tightly. The relative density of the ceramic was 93.2 % and strength was 165.5 MPa

    Azaisoquinolinones: N Positions Tell You Different Stories in Their Optical Properties

    No full text
    Since isoquinolinones and their derivatives have been demonstrated to be powerful building blocks in constructing larger acenes and twistacenes, azaisoquinolinones and their analogues could also be important intermediates to approach larger N-heteroacenes. In this paper, we are interested in developing a concise method to synthesize novel azaisoquinolinones building blocks and studying their physical properties. Our results showed that the different N positions have a large effect on the optical and electrochemical properties of azaisoquinolinones. For example, protonation of 6- and 7-azaisoquinolinones shows different shifts of UV–vis and FL spectra. More interestingly, 6- and 7-azaisoquinolinones exhibited different interactions with metal ions in CH<sub>3</sub>CN solution. Upon the addition of 2 equiv of Fe<sup>3+</sup>, 6-azaisoquinolinone displayed an absorption wavelength red-shifted from 470 to 540 nm (Δλ = 70 nm) with a color change from yellow to red, while the interaction between Fe<sup>3+</sup> and 7-azaisoquinolinone was very weak and there was no obvious color change (Δλ = 18 nm). Moreover, theoretical calculations confirmed the different optical properties with 6- and 7-azaisoquinolinones
    • 

    corecore