46 research outputs found

    Analysis of microbial contamination status and influencing factors in pre-cooked food enterprises

    Get PDF
    Objective To understand the status of microbial contamination in the production of pre-cooked food, provide a basis for the sanitary control of pre-cooked food enterprises, and to make recommendations for the formulation of related product hygiene specifications and standards. Methods From the 70 pre-cooked food enterprises in Hunan Province, 5 samples were stratified to detect the settling microbe in ambient air, the total coliform and the total number of colonies in the contact surface, the adjacent contact surface, and pre-cooked food samples. Results The total coliform and the total number of colonies in the ambient air of medium-sized enterprises and the surfaces and pre-cooked vegetable samples was higher (P<0.05), and the total number of colonies on each surface of the pre-cooked vegetable production workshop is higher (P<0.05). It is easier to touch the hands of processing personnel contaminated by microorganisms (P<0.05); the total number of colonies in pre-cooked vegetable products is higher (P<0.05), and the total number of coliforms and colonies in process products are higher than those in finished products (P<0.05). Conclusion Pre-cooked food enterprises, especially medium-sized enterprises, should strengthen the hygienic requirements of production workshops and the hygienic control of processing. It is recommended that the relevant product standards and hygienic specifications should pay attention to these issues

    High Q-factor, high contrast, and multi-band optical sensor based on plasmonic square bracket dimer metasurface

    Get PDF
    A high-performance resonant metasurface is rather promising for diverse application areas such as optical sensing and filtering. Herein, a metal–insulator–metal (MIM) optical sensor with merits of a high quality-factor (Q-factor), multiple operating bands, and high spectrum contrast is proposed using plasmonic square bracket dimer metasurface. Due to the complex square bracket itself, a dimer structure of two oppositely placed square brackets, and metasurface array configuration, multiple kinds of mode coupling can be devised in the inner and outer elements within the metasurface, enabling four sensing channels with the sensitivities higher than 200 nm/RIU for refractive index sensing. Among them, the special sensing channel based on the reflection-type surface lattice resonance (SLR) mechanism has a full width at half maximum (FWHM) of only 2 nm, a high peak-to-dip signal contrast of 0.82, a high Q-factor of 548, and it can also behave as a good sensing channel for the thickness measurement of the deposition layer. The multi-band sensor can work normally in a large refractive index or thickness range, and the number of resonant channels can be further increased by simply breaking the structural symmetry or changing the polarization angle of incident light. Equipped with unique advantages, the suggested plasmonic metasurface has great potential in sensing, monitoring, filtering, and other applications

    Visualization of ultrasonic wave field by stroboscopic polarization selective imaging

    Get PDF
    A stroboscopic method based on polarization selective imaging is proposed for dynamic visualization of ultrasonic waves propagating in a transparent medium. Multiple independent polarization parametric images were obtained, which enabled quantitative evaluation of the distribution of the ultrasonic pressure in quartz. In addition to the detection of optical phase differences δ in conventional photo-elastic techniques, the azimuthal angle φ and the Stokes parameter S2 of the polarized light are found to be highly sensitive to the wave-induced refraction index distribution, opening a new window on ultrasonic field visualization

    Stepped-height ridge waveguide MQW polarization mode converter monolithically integrated with sidewall grating DFB laser

    Full text link
    We report the first demonstration of a 1555 nm stepped-height ridge waveguide polarization mode converter monolithically integrated with a side wall grating distributed-feedback (DFB) laser using the identical epitaxial layer scheme. The device shows stable single longitudinal mode (SLM) operation with the output light converted from TE to TM polarization with an efficiency of >94% over a wide range of DFB injection currents (IDFB) from 140 mA to 190 mA. The highest TM mode purity of 98.2% was obtained at IDFB=180 mA. A particular advantage of this device is that only a single step of metalorganic vapor-phase epitaxy and two steps of III-V material dry etching are required for the whole integrated device fabrication, significantly reducing complexity and cost

    Regrowth-free AlGaInAs MQW polarization controller integrated with sidewall grating DFB laser

    Full text link
    We report an AlGaInAs multiple quantum well integrated source of polarization controlled light consisting of a polarization mode converter PMC, differential phase shifter(DPS), and a side wall grating distributed-feedback DFB laser. We demonstrate an asymmetrical stepped-height ridge waveguide PMC to realize TE to TM polarization conversion and a symmetrical straight waveguide DPS to enable polarization rotation from approximately counterclockwise circular polarization to linear polarization. Based on the identical epitaxial layer scheme, all of the PMC, DPS, and DFB laser can be integrated monolithically using only a single step of metalorganic vapor phase epitaxy and two steps of III V material dry etching. For the DFB-PMC device, a high TE to TM polarization conversion efficiency 98% over a wide range of DFB injection currents is reported at 1555 nm wavelength. For the DFB-PMC-DPS device, a 60 degree rotation of the Stokes vector was obtained on the Poincar\'e sphere with a range of bias voltage from 0 V to -4.0 V at IDFB is 170 mA.Comment: arXiv admin note: text overlap with arXiv:2210.1051

    Scattering Field Enhanced Biosensing Based on Sub-wavelength Split-ring Plasmonic Cavity With High Q-factor

    Get PDF
    Plasmonic structures are widely used in modern biosensor design. various plasmonic resonant cavities could efficiently achieve a high Q-factor, improving the local field intensity to enhance photoluminescence or SERS (Surface-Enhanced Raman Scattering) of small molecules. Also, the combination between virus-like particles and plasmonic structures could significantly influence the scattering spectrum and field, which is utilized as a method for biological particle detection. In this paper, we designed one kind of gold plasmonic cavity with the shape of a split-ring. An edge gap and a bonus center bulge are introduced in the split-ring structure. Our simulation is based on Finite Difference Time Domain (FDTD) method. Polarization Indirect Microscopic Imaging (PIMI) technique is used here to detect far-field mode distribution under the resonant wavelength. The simulation results demonstrate resonant peaks in the visible spectrum at about 600 nm with a Q-factor reaches to 74. Localized hot spots are generated by an edge dipole mode and a cavity hexapole mode at resonant wavelength, which is according to dark points in the PIMI sinδ image. Also, the split-ring cavity shows a sensitivity when combined with biological particles. The scattering distribution is evidently changed as a result of energy exchange between particles and split-ring cavity, indicating a promising possibility for biosensing

    Stepped-height ridge waveguide MQW polarization mode converter monolithically integrated with sidewall grating DFB laser

    Get PDF
    We report the first demonstration of a 1555 nm stepped-height ridge waveguide polarization mode converter monolithically integrated with a side wall grating distributed-feedback (DFB) laser using the identical epitaxial layer scheme. The device shows stable single longitudinal mode (SLM) operation with the output light converted from TE to TM polarization with an efficiency of &gt;94% over a wide range of DFB injection currents (IDFB) from 140 mA to 190 mA. The highest TM mode purity of 98.2% was obtained at IDFB=180 mA. A particular advantage of this device is that only a single step of metalorganic vapor-phase epitaxy and two steps of III-V material dry etching are required for the whole integrated device fabrication, significantly reducing complexity and cost

    Co-optimization method to improve lateral resolution in photoacoustic computed tomography

    Get PDF
    In biomedical imaging, photoacoustic computed tomography (PACT) has recently gained increased interest as this imaging technique has good optical contrast and depth of acoustic penetration. However, a spinning blur will be introduced during the image reconstruction process due to the limited size of the ultrasonic transducers (UT) and a discontinuous measurement process. In this study, a damping UT and adaptive back-projection co-optimization (CODA) method is developed to improve the lateral spatial resolution of PACT. In our PACT system, a damping aperture UT controls the size of the receiving area, which suppresses image blur at the signal acquisition stage. Then, an innovative adaptive back-projection algorithm is developed, which corrects the undesirable artifacts. The proposed method was evaluated using agar phantom and ex-vivo experiments. The results show that the CODA method can effectively compensate for the spinning blur and eliminate unwanted artifacts in PACT. The proposed method can significantly improve the lateral spatial resolution and image quality of reconstructed images, making it more appealing for wider clinical applications of PACT as a novel, cost-effective modality

    Sub-wavelength visualization of near-field scattering mode of plasmonic nano-cavity in the far-field

    Get PDF
    Spatial visualization of mode distribution of light scattering from plasmonic nanostructures is of vital importance for understanding the scattering mechanism and applications based on these plasmonic nanostructures. A long unanswered question in how the spatial information of scattered light from a single plasmonic nanostructure can be recovered in the far-field, under the constraints of the diffraction limit of the detection or imaging optical system. In this paper, we reported a theoretical model on retrieving local spatial information of scattered light by plasmonic nanostructures in a far-field optical imaging system. In the far-field parametric sin δ images, singularity points corresponding to near-field hot spots of the edge mode and the gap mode were resolved for gold ring and split rings with subwavelength diameters and feature sizes. The experimental results were verified with Finite Difference Time Domain (FDTD) simulation in the near-field and far-field, for the edge mode and the gap mode at 566 nm and 534 nm, respectively. In sin δ image of split-ring, two singularity points associated with near-field hot spots were visualized and resolved with the characteristic size of 90 and 100 nm, which is far below the diffraction limit. The reported results indicate the feasibility of characterizing the spatial distribution of scattering light in the far-field and with sub-wavelength resolution for single plasmonic nanostructures with sub-wavelength feature sizes
    corecore