58 research outputs found

    HIV-1gp120 Induces Neuronal Apoptosis through Enhancement of 4-Aminopyridine-Senstive Outward K+ Currents

    Get PDF
    Human immunodeficiency virus type 1 (HIV-1)-associated dementia (HAD) usually occurs late in the course of HIV-1 infection and the mechanisms underlying HAD pathogenesis are not well understood. Accumulating evidence indicates that neuronal voltage-gated potassium (Kv) channels play an important role in memory processes and acquired neuronal channelopathies in HAD. To examine whether Kv channels are involved in HIV-1-associated neuronal injury, we studied the effects of HIV-1 glycoprotein 120 (gp120) on outward K+ currents in rat cortical neuronal cultures using whole-cell patch techniques. Exposure of cortical neurons to gp120 produced a dose-dependent enhancement of A-type transient outward K+ currents (IA). The gp120-induced increase of IA was attenuated by T140, a specific antagonist for chemokine receptor CXCR4, suggesting gp120 enhancement of neuronal IA via CXCR4. Pretreatment of neuronal cultures with a protein kinase C (PKC) inhibitor, GF109203X, inhibited the gp120-induced increase of IA. Biological significance of gp120 enhancement of IA was demonstrated by experimental results showing that gp120-induced neuronal apoptosis, as detected by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay and caspase-3 staining, was attenuated by either an IA blocker 4-aminopyridine or a specific CXCR4 antagonist T140. Taken together, these results suggest that gp120 may induce caspase-3 dependent neuronal apoptosis by enhancing IA via CXCR4-PKC signaling

    CCL2 Accelerates Microglia-Mediated Aβ Oligomer Formation and Progression of Neurocognitive Dysfunction

    Get PDF
    The linkages between neuroinflammation and Alzheimer's disease (AD) pathogenesis are well established. What is not, however, is how specific immune pathways and proteins affect the disease. To this end, we previously demonstrated that transgenic over-expression of CCL2 enhanced microgliosis and induced diffuse amyloid plaque deposition in Tg2576 mice. This rodent model of AD expresses a Swedish beta-amyloid (Abeta) precursor protein mutant.We now report that CCL2 transgene expression accelerates deficits in spatial and working memory and hippocampal synaptic transmission in beta-amyloid precursor protein (APP) mice as early as 2-3 months of age. This is followed by increased numbers of microglia that are seen surrounding Abeta oligomers. CCL2 does not suppress Abeta degradation. Rather, CCL2 and tumor necrosis factor-alpha directly facilitated Abeta uptake, intracellular Abeta oligomerization, and protein secretion.We posit that CCL2 facilitates Abeta oligomer formation in microglia and propose that such events accelerate memory dysfunction by affecting Abeta seeding in the brain

    IL-17 Inhibits Oligodendrocyte Progenitor Cell Proliferation and Differentiation by Increasing K+ Channel Kv1.3

    Get PDF
    Interleukin 17 (IL-17) is a signature cytokine of Th17 cells. IL-17 level is significantly increased in inflammatory conditions of the CNS, including but not limited to post-stroke and multiple sclerosis. IL-17 has been detected direct toxicity on oligodendrocyte (Ol) lineage cells and inhibition on oligodendrocyte progenitor cell (OPC) differentiation, and thus promotes myelin damage. The cellular mechanism of IL-17 in CNS inflammatory diseases remains obscure. Voltage-gated K+ (Kv) channel 1.3 is the predominant Kv channel in Ol and potentially involved in Ol function and cell cycle regulation. Kv1.3 of T cells involves in immunomodulation of inflammatory progression, but the role of Ol Kv1.3 in inflammation-related pathogenesis has not been fully investigated. We hypothesized that IL-17 induces myelin injury through Kv1.3 activation. To test the hypothesis, we studied the involvement of OPC/Ol Kv1.3 in IL-17-induced Ol/myelin injury in vitro and in vivo. Kv1.3 currents and channel expression gradually decreased during the OPC development. Application of IL-17 to OPC culture increased Kv1.3 expression, leading to a decrease of AKT activation, inhibition of proliferation and myelin basic protein reduction, which were prevented by a specific Kv1.3 blocker 5-(4-phenoxybutoxy) psoralen. IL-17-caused myelin injury was validated in LPC-induced demyelination mouse model, particularly in corpus callosum, which was also mitigated by aforementioned Kv1.3 antagonist. IL-17 altered Kv1.3 expression and resultant inhibitory effects on OPC proliferation and differentiation may by interrupting AKT phosphorylating activation. Taken together, our results suggested that IL-17 impairs remyelination and promotes myelin damage by Kv1.3-mediated Ol/myelin injury. Thus, blockade of Kv1.3 as a potential therapeutic strategy for inflammatory CNS disease may partially attribute to the direct protection on OPC proliferation and differentiation other than immunomodulation

    Peripheral nerve induces macrophage neurotrophic activities: regulation of neuronal process outgrowth, intracellular signaling and synaptic function.

    Get PDF
    Abstract Rat cortical neurons cultured in conditioned media from human monocyte-derived macrophages (MDM) show increased neuronal protein synthesis, neurite outgrowth, mitogen-activating protein kinase activity, and synaptic function. Neurotrophic properties of human MDMconditioned media are significantly enhanced by human peripheral nerve and to a more limited extent by CD40 ligand pre-stimulation. Such positive effects of MDM secretions on neuronal function parallel the secretion of brain-derived neurotrophic factor (BDNF). MDM activation cues may serve to balance toxic activities produced during neurodegenerative diseases and thus, under certain circumstances, mitigate neuronal degeneration.

    Europium-doped cerium oxide nanoparticles for microglial Aβ clearance and homeostasis

    Get PDF
    Alzheimer’s disease (AD) is the most common neurodegenerative disorder. Pathologically, it is characterized by the deposition of amyloid beta (Aβ) plaques and presence of neurofibrillary tangles. These drive microglia neuroinflammation and consequent neurodegeneration. While the means to affect Aβ plaque accumulation was achieved how it affects disease outcomes remains uncertain. Cerium oxide (CeO2) reduces Aβ plaques, oxidative stress, inflammation, and Alzheimer’s disease (AD) signs and symptoms. Specifically, CeO2 nanoparticles (CeO2NPs) induces free radical scavenging and cell protective intracellular signaling. This can ameliorate the pathobiology of an AD-affected brain. In order to investigate, CeO2NPs affects for microglia neurotoxic responses a novel formulation of europium doped CeO2NPs (EuCeO2NPs) was synthesized. We then tested EuCeO2NPs for its’ abilities to generate cellular immune homeostasis in AD models. EuCeO2NPs attenuated microglia BV2 inflammatory activities after Aβ1–42 exposure by increasing the cells’ phagocytic and Aβ degradation activities. These were associated with increases in the expression of the CD36 scavenger receptor. EuCeO2NPs facilitated Aβ endolysosomal trafficking and abrogated microglial inflammatory responses. We posit that EuCeO2NPs may be developed as an AD immunomodulator

    Anti-NMDA receptor encephalitis: a review of mechanistic studies

    No full text
    NMDA receptors (NMDARs) are ion channels gated by glutamate, the major excitatory neurotransmitter in the central nervous system. Anti-NMDA receptor (anti-NMDAR) encephalitis is an autoimmune disease characterized by the presence of autoantibodies against the NMDAR GluN1 subunit. Here we briefly review current advances in the understanding of the mechanisms underlying the pathogenesis of anti-NMDAR encephalitis. The autoantibodies bind to and cross-link the endogenous NMDARs, disrupt the interaction of NMDARs with receptor tyrosine kinase EphB2 leading to internalization and reduced function of NMDARs. Hypofunction of the NMDARs results in impairment in long-term potentiation and deficit in learning and memory, leads to development of depression-like behavior, and lowers the threshold for seizures. Recent development of active immunization models of anti-NMDAR encephalitis provides insight into the inflammation process and paves the way for further studies that may lead to better treatment

    Reduction of brain mitochondrial β-oxidation impairs complex I and V in chronic alcohol intake: the underlying mechanism for neurodegeneration.

    Get PDF
    Neuropathy and neurocognitive deficits are common among chronic alcohol users, which are believed to be associated with mitochondrial dysfunction in the brain. The specific type of brain mitochondrial respiratory chain complexes (mRCC) that are adversely affected by alcohol abuse has not been studied. Thus, we examined the alterations of mRCC in freshly isolated mitochondria from mice brain that were pair-fed the ethanol (4% v/v) and control liquid diets for 7-8 weeks. We observed that alcohol intake severely reduced the levels of complex I and V. A reduction in complex I was associated with a decrease in carnitine palmitoyltransferase 1 (cPT1) and cPT2 levels. The mitochondrial outer (cPT1) and inner (cPT2) membrane transporter enzymes are specialized in acylation of fatty acid from outer to inner membrane of mitochondria for ATP production. Thus, our results showed that alterations of cPT1 and cPT2 paralleled a decrease β-oxidation of palmitate and ATP production, suggesting that impairment of substrate entry step (complex I function) can cause a negative impact on ATP production (complex V function). Disruption of cPT1/cPT2 was accompanied by an increase in cytochrome C leakage, while reduction of complex I and V paralleled a decrease in depolarization of mitochondrial membrane potential (ΔΨ, monitored by JC-1 fluorescence) and ATP production in alcohol intake. We noted that acetyl-L-carnitine (ALC, a cofactor of cPT1 and cPT2) prevented the adverse effects of alcohol while coenzyme Q10 (CoQ10) was not very effective against alcohol insults. These results suggest that understanding the molecular, biochemical, and signaling mechanisms of the CNS mitochondrial β-oxidation such as ALC can mitigate alcohol related neurological disorders

    Oligodendrocyte Injury and Pathogenesis of HIV-1-Associated Neurocognitive Disorders

    No full text
    Oligodendrocytes wrap neuronal axons to form myelin, an insulating sheath which is essential for nervous impulse conduction along axons. Axonal myelination is highly regulated by neuronal and astrocytic signals and the maintenance of myelin sheaths is a very complex process. Oligodendrocyte damage can cause axonal demyelination and neuronal injury, leading to neurological disorders. Demyelination in the cerebrum may produce cognitive impairment in a variety of neurological disorders, including human immunodeficiency virus type one (HIV-1)-associated neurocognitive disorders (HAND). Although the combined antiretroviral therapy has markedly reduced the incidence of HIV-1-associated dementia, a severe form of HAND, milder forms of HAND remain prevalent even when the peripheral viral load is well controlled. HAND manifests as a subcortical dementia with damage in the brain white matter (e.g., corpus callosum), which consists of myelinated axonal fibers. How HIV-1 brain infection causes myelin injury and resultant white matter damage is an interesting area of current HIV research. In this review, we tentatively address recent progress on oligodendrocyte dysregulation and HAND pathogenesis
    • …
    corecore