320 research outputs found
Cross-talks between perivascular adipose tissue and neighbors: multifaceted nature of nereids
Perivascular adipose tissue (PVAT) is a unique fat depot surrounding blood vessels and plays a vital role in the progression of vascular remodeling and dysfunction. PVAT exhibits remarkable differences in structure, phenotype, origin, and secretome across anatomical locations. The proximity of PVAT to neighboring vascular beds favors a niche for bidirectional communication between adipocytes and vascular smooth muscle cells, endothelial cells, and immune cells. In this review, we update our understanding of PVATâs regional differences and provide a comprehensive exploration of how these differences impact cross-talks between PVAT and the vascular wall. Different PVAT depots show different degrees of vasoprotective function and resilience to pathological changes such as obesity and vasculopathies, shaping multifaceted interactions between PVAT depots and adjacent vasculatures. The depot-specific resilience may lead to innovative strategies to manage cardiometabolic disorders
Do Masks Protect Children? Evidence from Floridaâs Mask Mandate Ban Using Large-Scale School Transmission Data
Our study examines the causal impact of mask mandates on COVID-19 transmission in elementary and middle schools using a natural experiment in Florida. While randomized controlled trials (RCTs) have been the gold standard for causal investigation, they face challenges such as lower compliance rates and typically focus only on the direct impact on mask wearers, overlooking the potential benefits of transmission reduction. Our natural experiment overcomes these issues, providing a broader view of mask mandatesâ effects. The results show a 20.6% increase in COVID-19 cases when mask mandates are banned. We also explore the moderating effects of school size, search volume for âmask,â and racial and poverty groups on the impact of the mask ban. Our study underscores the critical role of mask mandates and showcases the potential of utilizing publicly accessible data to generate insights on significant societal issues â a principle at the core of crowd-based platforms
Liver-specific knockout of arginase-1 leads to a profound phenotype similar to inducible whole body arginase-1 deficiency
Arginase-1 (Arg1) converts arginine to urea and ornithine in the distal step of the urea cycle in liver. We previously generated a tamoxifen-inducible Arg1 deficient mouse model (Arg1-Cre) that disrupts Arg1 expression throughout the whole body and leads to lethality â 2 weeks after gene disruption. Here, we evaluate if liver-selective Arg1 loss is sufficient to recapitulate the phenotype observed in global Arg1 knockout mice, as well as to gauge the effectiveness of gene delivery or hepatocyte transplantation to rescue the phenotype. Liver-selective Arg1 deletion was induced by using an adeno-associated viral (AAV)-thyroxine binding globulin (TBG) promoter-Cre recombinase vector administered to Arg1 "floxed" mice; Arg1(fl/fl) ). An AAV vector expressing an Arg1-enhanced green fluorescent protein (Arg1-eGFP) transgene was used for gene delivery, while intrasplenic injection of wild-type (WT) C57BL/6 hepatocytes after partial hepatectomy was used for cell delivery to "rescue" tamoxifen-treated Arg1-Cre mice. The results indicate that liver-selective loss of Arg1 (> 90% deficient) leads to a phenotype resembling the whole body knockout of Arg1 with lethality â 3 weeks after Cre-induced gene disruption. Delivery of Arg1-eGFP AAV rescues more than half of Arg1 global knockout male mice (survival > 4 months) but a significant proportion still succumb to the enzyme deficiency even though liver expression and enzyme activity of the fusion protein reach levels observed in WT animals. Significant Arg1 enzyme activity from engrafted WT hepatocytes into knockout livers can be achieved but not sufficient for rescuing the lethal phenotype. This raises a conundrum relating to liver-specific expression of Arg1. On the one hand, loss of expression in this organ appears to be both necessary and sufficient to explain the lethal phenotype of the genetic disorder in mice. On the other hand, gene and cell-directed therapies suggest that rescue of extra-hepatic Arg1 expression may also be necessary for disease correction. Further studies are needed in order to illuminate the detailed mechanisms for pathogenesis of Arg1-deficiency
Access tunnel engineering to optimize the catalytic cycle of carbohydrate hydrolases with buried active site
The active site of many enzymes is buried inside the protein core and is connected with the surrounding solvent by access tunnels. An emerging approach to optimize these enzymes properties is the engineering of structural features governing the exchange of ligands between the active sites and bulk solvent. However, it is still challenging to redesign the access tunnels of enzymes catalyzing biopolymers like carbohydrate hydrolases because of the extremely complicated substrate structure. In this study, structure-guided saturated mutagenesis was performed to reconstruct all three access tunnels of xylanase S7-xyl from Bacillus halodurans S7, which results in a mutant 254-RL1 with 3.4-fold increase in specific activity. Structural comparison and kinetic analysis revealed that products egress is the rate-limiting step in the catalytic cycle of S7-xyl. The products release tunnel in S7-xyl was experimentally validated, and not the tunnel radius but the length determining the products release efficiency. Application assessment showed that relieving the inhibition of reducing sugars on mutant 254-RL1 could accelerate the hydrolysis efficiency of cellulase on different pretreated lignocellulose materials, representing a good candidate in enzyme cocktails for lignocellulose biodegradation. In addition, the same strategy was successfully utilized to improve the specific activities of three other xylanases with buried active site, suggesting the general application of tunnel engineering to optimize carbohydrate hydrolases with buried active site
Regional Heterogeneity of Perivascular Adipose Tissue: Morphology, Origin, and Secretome
Perivascular adipose tissue (PVAT) is a unique fat depot with local and systemic impacts. PVATs are anatomically, developmentally, and functionally different from classical adipose tissues and they are also different from each other. PVAT adipocytes originate from different progenitors and precursors. They can produce and secrete a wide range of autocrine and paracrine factors, many of which are vasoactive modulators. In the context of obesity-associated low-grade inflammation, these phenotypic and functional differences become more evident. In this review, we focus on the recent findings of PVATâs heterogeneity by comparing commonly studied adipose tissues around the thoracic aorta (tPVAT), abdominal aorta (aPVAT), and mesenteric artery (mPVAT). Distinct origins and developmental trajectory of PVAT adipocyte potentially contribute to regional heterogeneity. Regional differences also exist in ways how PVAT communicates with its neighboring vasculature by producing specific adipokines, vascular tone regulators, and extracellular vesicles in a given microenvironment. These insights may inspire new therapeutic strategies targeting the PVAT
Atomic Layer Deposition of Insulating AlF3/Polyimide Nanolaminate Films
This article describes the deposition of AlF3/polyimide nanolaminate film by inorganic-organic atomic layer deposition (ALD) at 170 °C. AlCl3 and TiF4 were used as precursors for AlF3. Polyimide layers were deposited from PMDA (pyromellitic dianhydride, 1,2,3,5-benzenetetracarboxylic anhydride) and DAH (1,6-diaminohexane). With field-emission scanning electron microscopy (FESEM) and X-ray reflection (XRR) analysis, it was found that the topmost layer (nominally 10 nm in thickness) of the nanolaminate film (100 nm total thickness) changed when exposed to the atmosphere. After all, the effect on roughness was minimal. The length of a delay time between the AlF3 and polyimide depositions was found to affect the sharpness of the nanolaminate structure. Electrical properties of AlF3/polyimide nanolaminate films were measured, indicating an increase in dielectric constant compared to single AlF3 and a decrease in leakage current compared to polyimide films, respectively
- âŠ