14 research outputs found

    Viunalikeviruses are environmentally common agents of horizontal gene transfer in pathogens and biocontrol bacteria.

    Get PDF
    Bacteriophages have been used as natural biocontrol and therapeutic agents, but also as biotechnological tools for bacterial engineering. We showed recently that the transducing bacteriophage ϕMAM1 is a ViI-like phage and a member of the new genus, 'Viunalikevirus'. Here, we show that four additional ViI-like phages and three new environmentally isolated viunalikeviruses, all infecting plant and human pathogens, are very efficient generalised transducers capable of transducing chromosomal markers at frequencies of up to 10(-4) transductants per plaque-forming unit. We also demonstrate the interstrain transduction of plasmids and chromosomal markers, including genes involved in anabolism, genes for virulence and genes encoding secondary metabolites involved in biocontrol. We propose that all viunalikeviruses are likely to perform efficient horizontal gene transfer. Viunalikeviruses therefore represent useful agents for functional genomics and bacterial engineering, and for chemical and synthetic biology studies, but could be viewed as inappropriate choices for phage therapy.This research was supported by the EU Marie-Curie Intra-European Fellowship for Career Development (FP7- PEOPLE-2011-IEF) grant number 298003.This is the version of record of the article "Viunalikeviruses are environmentally common agents of horizontal gene transfer in pathogens and biocontrol bacteria" published in ISME Journal on August 2104 under the NPG Open Access option. The published version of record is available on the journal website at http://dx.doi.org/10.1038/ismej.2014.15

    The controlling effect of sedimentary characteristics on the heterogeneity of the Chang 6 reservoir in the Wuliwan area

    No full text
    The sedimentary system of the delta front is complex. The hydrodynamic conditions, changes in sediment supply, and mineral composition are crucial factors that influence the quality of reservoirs. Reservoir quality varies among different sedimentary units. In this field of research, there is a general tendency to mainly use core data and logging curves for reservoir characterization and prediction, while neglecting the combination with the microscopic scale of the reservoir. This article proposes a new method to characterize reservoir heterogeneity by studying the sedimentary characteristics of reservoirs. This method uses casting thin-section data to aid in core and logging research. This study consists of five parts: core analysis, casting thin-section study, logging facies study, geological analysis, and single-well prediction. Combining macroscopic and microscopic methods helps clarify the controlling effect of sedimentary characteristics on reservoir heterogeneity. The research results indicate that this research method effectively solves the challenge of characterizing reservoir heterogeneity in the middle and later stages of development of low-permeability reservoirs. The research outputs serve as valuable references for the advancement of analytical matching fields

    Resveratrol alleviates high glucose-induced oxidative stress and apoptosis in rat cardiac microvascular endothelial cell through AMPK/Sirt1 activation

    No full text
    Diabetic cardiomyopathy (DCM) is a common complication of diabetes. DCM causes extensive lesions on cardiac microvasculature that is predominantly cardiac microvascular endothelial cells (CMECs). Reducing high glucose (HG)-induced damage such as oxidative damage and apoptosis could alleviate the development of DCM. The natural polyphenol resveratrol (RSV) is widely suggested as a cardioprotective agent that protect against DCM. However, limited evidence supports the protection of RSV against oxidative damage and apoptosis and study on the direct effects of RSV in CMEC is missing. Therefore, the current paper aimed to illustrate if RSV could attenuate oxidative stress and apoptosis in CMEC and to investigate the underlying mechanisms. Our data showed that HG elevated reactive oxygen species, malondialdehyde, decreased superoxide dismutase activity, increased apoptotic cell percentage in CMEC, which were reversed by RSV administration. In addition, RSV demonstrated antioxidative and anti-apoptotic effects in CMEC through AMPK/Sirt1 activation, further confirmed by AMPK inhibition or Sirt1 silencing. This study provides new evidence to support RSV as a potential cardioprotective alternative in treating DCM

    High-Yield Electrochemical Production of Large-Sized and Thinly Layered NiPS3 Flakes for Overall Water Splitting

    No full text
    Achieving large‐sized and thinly layered 2D metal phosphorus trichalcogenides with high quality and yield has been an urgent quest due to extraordinary physical/chemical characteristics for multiple applications. Nevertheless, current preparation methodologies suffer from uncontrolled thicknesses, uneven morphologies and area distributions, long processing times, and inferior quality. Here, a sonication‐free and fast (in minutes) electrochemical cathodic exfoliation approach is reported that can prepare large‐sized (typically ≈150 µm2) and thinly layered (≈70% monolayer) NiPS3 flakes with high crystallinity and pure phase structure with a yield ≈80%. During the electrochemical exfoliation process, the tetra‐n‐butylammonium salt with a large ionic diameter is decomposed into gaseous species after the intercalation and efficiently expands the tightly stratified bulk NiPS3 crystals, as revealed by in situ and ex situ characterizations. Atomically thin NiPS3 flakes can be obtained by slight manual shaking rather than sonication, which largely preserves in‐plane structural integrity with large size and minimum damage. The obtained high quality NiPS3 offers a new and ideal model for overall water splitting due to its inherent fully exposed S and P atoms that are often the active sites for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Consequently, the bifunctional NiPS3 exhibits outstanding performance for overall water splitting.The authors acknowledge the support from the National Natural Science Foundation of China (Nos. 61875139, 91433107, 51502174, 91645102, and 51702219), Research Foundation of China Postdoctoral Science (2018M630976), the National Key Research & Development Program (No. 2016YFA0201900), Guangdong Special Support Program, Shenzhen Peacock Plan (Grant Nos. 827-000113, KQJSCX20170727100802505, and KQTD2016053112042971), the Educational Commission of Guangdong Province (2016KTSCX126), Shenzhen Nanshan District Pilotage Team Program (LHTD20170006), Science and Technology Project of Shenzhen (ZDSYS201707271014468), and Australian Research Council (ARC, FT150100450, IH150100006, and CE170100039)

    Atomically precise single metal oxide cluster catalyst with oxygen-controlled activity

    No full text
    Single cluster catalysts (SCCs) consisting of atomically precise metal nanoclusters dispersed on supports represent a new frontier of heterogeneous catalysis. However, the ability to synthesize SCCs with high loading and to precisely introduce non-metal atoms to further tune their catalytic activity and reaction scope of SCCs have been longstanding challenges. Here, a new interface confinement strategy is developed for the synthesis of a high density of atomically precise Ru oxide nanoclusters (Ru3O2) on reduced graphene oxide (rGO), attributed to the suppression of diffusion-induced metal cluster aggregation. Ru3O2/rGO exhibits a significantly enhanced activity for oxidative dehydrogenation of 1,2,3,4-tetrahydroquinoline (THQ) to quinoline with a high yield (≈86%) and selectivity (≈99%), superior to Ru and RuO2 nanoparticles, and homogeneous single/multiple-site Ru catalysts. In addition, Ru3O2/rGO is also capable of efficiently catalyzing more complex oxidative reactions involving three reactants. The theoretical calculations reveal that the presence of two oxygen atoms in the Ru3O2 motif not only leads to a weak hydrogen bonding interaction between the THQ reactant and the active site, but also dramatically depletes the density of states near the Fermi level, which is attributed to the increased positive valence state of Ru and the enhanced oxidative activity of the Ru3O2 cluster for hydrogen abstraction.Agency for Science, Technology and Research (A*STAR)Ministry of Education (MOE)J.L. acknowledges the support from MOE grants (MOE2019-T2-2-044 and R-143-000-B47-114) and the support from Agency for Science, Technology and Research (A*STAR) under its AME IRG Grant (Project No. A20E5c0096) and NUS Green Energy Program. Y.Y.F thanks the support from National Natural Science Foundation of China (22005244) and Natural Science Foundation of Ningbo City (202003N4052)

    Electrochemical Generation of Te Vacancy Pairs in PtTe for Efficient Hydrogen Evolution

    No full text
    Two-dimensional (2D) van der Waals materials are increasingly seen as potential catalysts due to their unique structures and unmatched properties. However, achieving precise synthesis of these remarkable materials and regulating their atomic and electronic structures at the most fundamental level to enhance their catalytic performance remain a significant challenge. In this study, we synthesized single-crystal bulk PtTe crystals via chemical vapor transport and subsequently produced atomically thin, large PtTe nanosheets (NSs) through electrochemical cathode intercalation. These NSs are characterized by a significant presence of Te vacancy pairs, leading to undercoordinated Pt atoms on their basal planes. Experimental and theoretical studies together reveal that Te vacancy pairs effectively optimize and enhance the electronic properties (such as charge distribution, density of states near the Fermi level, and d-band center) of the resultant undercoordinated Pt atoms. This optimization results in a significantly higher percentage of dangling O–H water, a decreased energy barrier for water dissociation, and an increased binding affinity of these Pt atoms to active hydrogen intermediates. Consequently, PtTe NSs featuring exposed and undercoordinated Pt atoms demonstrate outstanding electrocatalytic activity in hydrogen evolution reactions, significantly surpassing the performance of standard commercial Pt/C catalysts
    corecore