36 research outputs found

    Interplay between moment-dependent and field-driven unidirectional magnetoresistance in CoFeB/InSb/CdTe heterostructures

    Full text link
    Magnetoresistance effects are crucial for understanding the charge/spin transport as well as propelling the advancement of spintronic applications. Here we report the coexistence of magnetic moment-dependent (MD) and magnetic field-driven (FD) unidirectional magnetoresistance (UMR) effects in CoFeB/InSb/CdTe heterostructures. The strong spin-orbital coupling of InSb and the matched impedance at the CoFeB/InSb interface warrant a distinct MD-UMR effect at room temperature, while the interaction between the in-plane magnetic field and the Rashba effect at the InSb/CdTe interface induces the marked FD-UMR signal that dominates the high-field region. Moreover, owning to the different spin transport mechanisms, these two types of nonreciprocal charge transport show opposite polarities with respect to the magnetic field direction, which further enable an effective phase modulation of the angular-dependent magnetoresistance. Besides, the demonstrations of both the tunable UMR response and two-terminal spin-orbit torque-driven magnetization switching validate our CoFeB/InSb/CdTe system as a suitable integrated building block for multifunctional spintronic device design

    Dbh+ catecholaminergic cardiomyocytes contribute to the structure and function of the cardiac conduction system in murine heart

    Get PDF
    The heterogeneity of functional cardiomyocytes arises during heart development, which is essential to the complex and highly coordinated cardiac physiological function. Yet the biological and physiological identities and the origin of the specialized cardiomyocyte populations have not been fully comprehended. Here we report a previously unrecognised population of cardiomyocytes expressing Dbhgene encoding dopamine beta-hydroxylase in murine heart. We determined how these myocytes are distributed across the heart by utilising advanced single-cell and spatial transcriptomic analyses, genetic fate mapping and molecular imaging with computational reconstruction. We demonstrated that they form the key functional components of the cardiac conduction system by using optogenetic electrophysiology and conditional cardiomyocyte Dbh gene deletion models. We revealed their close relationship with sympathetic innervation during cardiac conduction system formation. Our study thus provides new insights into the development and heterogeneity of the mammalian cardiac conduction system by revealing a new cardiomyocyte population with potential catecholaminergic endocrine function

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Computer-aided design of heterogeneous objects

    No full text
    published_or_final_versionabstractMechanical EngineeringDoctoralDoctor of Philosoph

    Experimental Study on Dynamic Compressive Behaviors of Sand under Passive Confining Pressure

    No full text
    Dynamic compressive tests of sand under passive confining pressure were carried out using a Split Hopkinson Pressure Bar (SHPB) setup. The dynamic response, energy dissipation and particle-breaking behaviors of sand subjected to high-speed impact were investigated. Sand specimens with moisture contents of 0%, 2%, 4%, 8%, 10% and 12% and relative densities of 0.1, 0.5 and 0.9 were prepared. The variation in the strain rate was controlled between 90 s−1 and 500 s−1. The specimens were confined in a designed sleeve to create passive confining pressure. The experimental results show that the sand specimens were extremely sensitive to the strain rate. When the strain rate was less than 400 s−1, the stress and strain of the specimens increased with the increase in the strain rate but decreased when the strain rate exceeded 400 s−1. The peak strain and peak stress increased with the increase in the relative density. Particle breakage was aggravated with the strain-rate increase. Compared with the specimen without water, the relative breakage rate of the specimen with a moisture content of 12% decreased by 30.53% when the strain rate was about 95 s−1 and by 25.44% when the strain rate was about 460 s−1. The analysis of energy dissipation revealed the essential cause of sand destruction. The specific energy absorption rate increased with the increases in the initial relative density and moisture content

    The Effect of Acidity Coefficient on the Crystallization Properties and Viscosity of Modified Blast Furnace Slag for Mineral Wool Production

    No full text
    The crystallization and viscosity of modified blast furnace slag are key factors in fiber forming conditions. In this paper, the crystallization behavior of modified blast furnace slag under continuous cooling conditions was studied by differential scanning calorimetry, and its crystallization kinetics with different acidity coefficients were established. On this basis, the evolution law of the crystallization phase and the influence of crystallization on the viscosity of modified blast furnace slag with different acidity coefficients were analyzed. The results indicated that the crystallization phases of slag with acidity coefficients of 1.05 and 1.20 were, respectively, Melilite and Anorthite. During the cooling process at the acidity coefficient of 1.05, the critical rates of precipitation of Melilite and Anorthite were 50 °C/s and 20 °C/s, respectively, while they were 20 °C/s and 15 °C/s, respectively, at the acidity coefficient of 1.20. With the increase of the acidity coefficient, the crystal growth mode of slag changed from two-dimensional and three-dimensional mixed crystallization to surface nucleation and one-dimensional crystallization. The crystallization activation energy of slag with acidity coefficients of 1.05 and 1.20 were 698.14 kJ/mol and 1292.50 kJ/mol, respectively. In addition, the change trend of viscosity was related to crystal size and content

    Optimization of Cellulase Production by a Novel Endophytic Fungus Penicillium oxalicum R4 Isolated from Taxus cuspidata

    No full text
    Endophytic fungi inside a plant can degrade a portion of plant lignin and cellulose. Endophytic Penicillium is one of the industrial microorganisms with the advantage of producing enzymes with a complete enzyme system that can be secreted into the extracellular space. The natural evolution of ancient tree species from special natural geographic environments to screen out cellulase-producing strains with excellent characteristics provides a promising direction for future industrial enzymes. The present study successfully isolated and screened a novel fungal endophyte, Penicillium oxalicum R4, with higher cellulase activity from Taxus cuspidata. Under the optimized culture conditions obtained by a Box–Behnken design (BBD) and an artificial neural network–genetic algorithm (ANN–GA), yields of Filter Paperase (FPase), Carboxymethyl Cellulase (CMCase) and β-glucosidase (βGLase) produced by P. oxalicum R4 were 1.45, 5.27 and 6.35 U/mL, which were approximately 1.60-fold, 1.59-fold and 2.16-fold higher than those of the non-optimized culture, respectively. The discovery of cellulase-producing strains of endophytic fungi located in special natural geographic environments, such as Taxus cuspidata, which is known as a living plant fossil, provides new research directions for future industrial enzymes

    Optimized Planting Density and Nitrogen Rate Increased Grain Yield and Water-Nitrogen Use Efficiency of Two Maize Cultivars under Mulched Drip Fertigation by Improving Population Photosynthesis and Grain-Filling Characteristics

    No full text
    The characteristics of photosynthesis and grain filling play a significant role in determining maize (Zea mays L.) yield. Planting density and nitrogen (N) rate are two factors affecting the growth, physiology, and grain yield of maize. The coupling effects of planting density and N rate on individual and population photosynthetic rates, grain-filling characteristics, grain yield, water use efficiency (WUE), and N partial factor productivity (NPFP) of two maize cultivars (QS51 and ZD958) under mulched drip fertigation in northwest China were investigated. Three planting densities (D1: 80,000 plants ha−1, D2: 100,000 plants ha−1, and D3: 120,000 plants ha−1) and three N rates (N0: 0 kg ha−1, N180: 180 kg ha−1, and N240: 240 kg ha−1) were designed. The results showed that the population photosynthetic rate, grain yield, WUE, and NPFP were significantly affected by planting density and N rate for both QS51 and ZD958, and their interaction had a significant effect on grain yield, WUE, and NPFP. Nitrogen application significantly improved grain-filling rates compared with N0, but there was no significant difference between N240 and N180. The D2N180 treatment obtained the maximum grain yield (15,693 kg ha−1 for QS51 and 17,644 kg ha−1 for ZD958), WUE (3.42 kg kg−1 for QS51 and 3.05 kg kg−1 for ZD958), and NPFP (98.37 kg kg−1 for QS51 and 83.93 kg kg−1 for ZD958). It was concluded that the optimized planting density and N rate improved grain yield and water-nitrogen use efficiency of QS51 and ZD958 by increasing population photosynthetic rate, grain-filling rate, and grain weight. This study enhanced our understanding of how optimized planting density and N rate maintained the sustainable maize production under mulched drip fertigation in northwest China
    corecore