24 research outputs found

    Discovery of N‑Substituted Oseltamivir Derivatives as Potent and Selective Inhibitors of H5N1 Influenza Neuraminidase

    No full text
    To discover group-1-specific neuraminidase (NA) inhibitors that are especially involved in combating the H5N1 virus, two series of oseltamivir derivatives were designed and synthesized by targeting the 150-cavity. Among these, compound <b>20l</b> was the most potent N1-selective inhibitor, with IC<sub>50</sub> values of 0.0019, 0.0038, and 0.0067 μM against NAs from three H5N1 viruses. These values are better than those of oseltamivir carboxylate. Compound <b>32</b> was another potent N1-selective inhibitor that exhibited a 12-fold increase in activity against the H274Y mutant relative to oseltamivir carboxylate. Molecular docking studies revealed that the 150-cavity was an auxiliary binding site that may contribute to the high selectivity of these compounds. The present work is a significant breakthrough in the discovery of potent group-1-specific neuraminidase inhibitors, which may be further investigated for the treatment of infection by the H5N1 virus

    Structure-Based Design of Novel G‑Protein-Coupled Receptor TAAR1 Agonists as Potential Antipsychotic Drug Candidates

    No full text
    The existing available antipsychotics have failed to manage the cognitive impairment of schizophrenia and induced a number of seriously undesirable effects. Trace amine-associated receptor 1 (TAAR1) has emerged as an ideal target for the design of antischizophrenia drugs, with the ability to mediate multiple psychological functions by sensing endogenous amine-containing metabolites without the side effects of catalepsy. In this work, a series of novel TAAR1 agonists were designed based on the structural analysis of the TAAR1 activation pocket. Among them, 6e displayed a potent TAAR1-Gs/Gq dual-pathway activation property, being different from that of the clinical drug candidate SEP-363856 with only TAAR1-Gs pathway activation. In rodent models, 6e significantly alleviated MK-801-induced schizophrenia-like cognitive phenotypes without inducing catalepsy. Furthermore, 6e·HCl exhibited favorable pharmacokinetic (T1/2 = 2.31 h, F = 39%) and safety properties. All these demonstrated that 6e·HCl may be used as a novel drug candidate for schizophrenia treatment

    Structure-Based Design of Novel G‑Protein-Coupled Receptor TAAR1 Agonists as Potential Antipsychotic Drug Candidates

    No full text
    The existing available antipsychotics have failed to manage the cognitive impairment of schizophrenia and induced a number of seriously undesirable effects. Trace amine-associated receptor 1 (TAAR1) has emerged as an ideal target for the design of antischizophrenia drugs, with the ability to mediate multiple psychological functions by sensing endogenous amine-containing metabolites without the side effects of catalepsy. In this work, a series of novel TAAR1 agonists were designed based on the structural analysis of the TAAR1 activation pocket. Among them, 6e displayed a potent TAAR1-Gs/Gq dual-pathway activation property, being different from that of the clinical drug candidate SEP-363856 with only TAAR1-Gs pathway activation. In rodent models, 6e significantly alleviated MK-801-induced schizophrenia-like cognitive phenotypes without inducing catalepsy. Furthermore, 6e·HCl exhibited favorable pharmacokinetic (T1/2 = 2.31 h, F = 39%) and safety properties. All these demonstrated that 6e·HCl may be used as a novel drug candidate for schizophrenia treatment

    Structure-Based Design of Novel G‑Protein-Coupled Receptor TAAR1 Agonists as Potential Antipsychotic Drug Candidates

    No full text
    The existing available antipsychotics have failed to manage the cognitive impairment of schizophrenia and induced a number of seriously undesirable effects. Trace amine-associated receptor 1 (TAAR1) has emerged as an ideal target for the design of antischizophrenia drugs, with the ability to mediate multiple psychological functions by sensing endogenous amine-containing metabolites without the side effects of catalepsy. In this work, a series of novel TAAR1 agonists were designed based on the structural analysis of the TAAR1 activation pocket. Among them, 6e displayed a potent TAAR1-Gs/Gq dual-pathway activation property, being different from that of the clinical drug candidate SEP-363856 with only TAAR1-Gs pathway activation. In rodent models, 6e significantly alleviated MK-801-induced schizophrenia-like cognitive phenotypes without inducing catalepsy. Furthermore, 6e·HCl exhibited favorable pharmacokinetic (T1/2 = 2.31 h, F = 39%) and safety properties. All these demonstrated that 6e·HCl may be used as a novel drug candidate for schizophrenia treatment

    Identification of Potent Ebola Virus Entry Inhibitors with Suitable Properties for in Vivo Studies

    No full text
    Previous studies identified an adamantane dipeptide piperazine <b>3.47</b> that inhibits Ebola virus (EBOV) infection by targeting the essential receptor Niemann–Pick C1 (NPC1). The physicochemical properties of <b>3.47</b> limit its potential for testing in vivo. Optimization by improving potency, reducing hydrophobicity, and replacing labile moieties identified <b>3.47</b> derivatives with improved in vitro ADME properties that are also highly active against EBOV infection, including when tested in the presence of 50% normal human serum (NHS). In addition, 3A4 was identified as the major cytochrome P450 isoform that metabolizes these compounds, and accordingly, mouse microsome stability was significantly improved when tested in the presence of the CYP3A4 inhibitor ritonavir that is approved for clinical use as a booster of anti-HIV drugs. Oral administration of the EBOV inhibitors with ritonavir resulted in a pharmacokinetic profile that supports a b.i.d. dosing regimen for efficacy studies in mice

    Structure-Based Design of Novel G‑Protein-Coupled Receptor TAAR1 Agonists as Potential Antipsychotic Drug Candidates

    No full text
    The existing available antipsychotics have failed to manage the cognitive impairment of schizophrenia and induced a number of seriously undesirable effects. Trace amine-associated receptor 1 (TAAR1) has emerged as an ideal target for the design of antischizophrenia drugs, with the ability to mediate multiple psychological functions by sensing endogenous amine-containing metabolites without the side effects of catalepsy. In this work, a series of novel TAAR1 agonists were designed based on the structural analysis of the TAAR1 activation pocket. Among them, 6e displayed a potent TAAR1-Gs/Gq dual-pathway activation property, being different from that of the clinical drug candidate SEP-363856 with only TAAR1-Gs pathway activation. In rodent models, 6e significantly alleviated MK-801-induced schizophrenia-like cognitive phenotypes without inducing catalepsy. Furthermore, 6e·HCl exhibited favorable pharmacokinetic (T1/2 = 2.31 h, F = 39%) and safety properties. All these demonstrated that 6e·HCl may be used as a novel drug candidate for schizophrenia treatment

    Structure-Based Design of Novel G‑Protein-Coupled Receptor TAAR1 Agonists as Potential Antipsychotic Drug Candidates

    No full text
    The existing available antipsychotics have failed to manage the cognitive impairment of schizophrenia and induced a number of seriously undesirable effects. Trace amine-associated receptor 1 (TAAR1) has emerged as an ideal target for the design of antischizophrenia drugs, with the ability to mediate multiple psychological functions by sensing endogenous amine-containing metabolites without the side effects of catalepsy. In this work, a series of novel TAAR1 agonists were designed based on the structural analysis of the TAAR1 activation pocket. Among them, 6e displayed a potent TAAR1-Gs/Gq dual-pathway activation property, being different from that of the clinical drug candidate SEP-363856 with only TAAR1-Gs pathway activation. In rodent models, 6e significantly alleviated MK-801-induced schizophrenia-like cognitive phenotypes without inducing catalepsy. Furthermore, 6e·HCl exhibited favorable pharmacokinetic (T1/2 = 2.31 h, F = 39%) and safety properties. All these demonstrated that 6e·HCl may be used as a novel drug candidate for schizophrenia treatment

    Structure-Based Design of Novel G‑Protein-Coupled Receptor TAAR1 Agonists as Potential Antipsychotic Drug Candidates

    No full text
    The existing available antipsychotics have failed to manage the cognitive impairment of schizophrenia and induced a number of seriously undesirable effects. Trace amine-associated receptor 1 (TAAR1) has emerged as an ideal target for the design of antischizophrenia drugs, with the ability to mediate multiple psychological functions by sensing endogenous amine-containing metabolites without the side effects of catalepsy. In this work, a series of novel TAAR1 agonists were designed based on the structural analysis of the TAAR1 activation pocket. Among them, 6e displayed a potent TAAR1-Gs/Gq dual-pathway activation property, being different from that of the clinical drug candidate SEP-363856 with only TAAR1-Gs pathway activation. In rodent models, 6e significantly alleviated MK-801-induced schizophrenia-like cognitive phenotypes without inducing catalepsy. Furthermore, 6e·HCl exhibited favorable pharmacokinetic (T1/2 = 2.31 h, F = 39%) and safety properties. All these demonstrated that 6e·HCl may be used as a novel drug candidate for schizophrenia treatment

    Identification of Potent Ebola Virus Entry Inhibitors with Suitable Properties for in Vivo Studies

    No full text
    Previous studies identified an adamantane dipeptide piperazine <b>3.47</b> that inhibits Ebola virus (EBOV) infection by targeting the essential receptor Niemann–Pick C1 (NPC1). The physicochemical properties of <b>3.47</b> limit its potential for testing in vivo. Optimization by improving potency, reducing hydrophobicity, and replacing labile moieties identified <b>3.47</b> derivatives with improved in vitro ADME properties that are also highly active against EBOV infection, including when tested in the presence of 50% normal human serum (NHS). In addition, 3A4 was identified as the major cytochrome P450 isoform that metabolizes these compounds, and accordingly, mouse microsome stability was significantly improved when tested in the presence of the CYP3A4 inhibitor ritonavir that is approved for clinical use as a booster of anti-HIV drugs. Oral administration of the EBOV inhibitors with ritonavir resulted in a pharmacokinetic profile that supports a b.i.d. dosing regimen for efficacy studies in mice

    Lead Optimization and Avoidance of Metabolic-perturbing Motif Developing Novel Diarylpyrimidines as Potent HIV‑1 NNRTIs

    No full text
    Non-nucleoside reverse transcriptase inhibitors (NNRTIs) represent an indispensable part of anti-HIV-1 therapy. To discover novel HIV-1 NNRTIs with increased drug resistance profiles and improved pharmacokinetic (PK) properties, a series of novel diarylpyrimidine derivatives were generated via the cocrystal structure-based drug design strategy. Among them, 36a exhibited outstanding antiviral activity against HIV-1 IIIB and a panel of mutant strains (L100I, K103N, Y181C, Y188L, E138K, F227L + V106A, and RES056), with EC50 ranging from 2.22 to 53.3 nM. Besides, 36a was identified with higher binding affinity (KD = 2.50 μM) and inhibitory activity (IC50 = 0.03 μM) to HIV-1 RT. Molecular docking and molecular dynamics simulation were performed to rationalize the design and the improved drug resistance of these novel inhibitors. Additionally, 36a·HCl exhibited favorable PK (T1/2 = 5.12 h, F = 12.1%) and safety properties (LD50 > 2000 mg/kg). All these suggested that 36a·HCl may serve as a novel drug candidate anti-HIV-1 therapy
    corecore