68 research outputs found

    Diagnostic and prognostic potential of exosome non-coding RNAs in bladder cancer: a systematic review and meta-analysis

    Get PDF
    BackgroundBladder cancer stands as the predominant malignant tumor in the urological system, presenting a significant challenge to public health and garnering extensive attention. Recently, with the deepening research into tumor molecular mechanisms, non-coding RNAs (ncRNAs) have emerged as potential biomarkers offering guidance for the diagnosis and prognosis of bladder cancer. However, the definitive role of ncRNAs in bladder cancer remains unclear. Hence, this study aims to elucidate the relevance and significance of ncRNAs through a Meta-analysis.MethodsA systematic meta-analysis was executed, including studies evaluating the diagnostic performance of ncRNAs and their associations with overall survival (OS) and disease-free survival (DFS). Key metrics such as hazard ratios, sensitivity, specificity, and diagnostic odds ratios were extracted and pooled from these studies. Potential publication bias was assessed using Deeks’ funnel plot, and the robustness of the results was ascertained through a sensitivity analysis.ResultsElevated ncRNA expression showed a positive correlation with improved OS, evidenced by a hazard ratio (HR) of 0.82 (95% CI: 0.66-0.96, P<0.001). Similarly, a significant association was observed between heightened ncRNA expression and DFS, with an HR of 0.86 (95% CI: 0.73-0.99, P<0.001). Diagnostic performance analysis across 17 articles yielded a pooled sensitivity of 0.76 and a specificity of 0.83. The diagnostic odds ratio was recorded at 2.71, with the area under the ROC curve (AUC) standing at 0.85.ConclusionExosome ncRNAs appear to possess potential significance in the diagnostic and prognostic discussions of bladder cancer. Their relationship with survival outcomes and diagnostic measures suggests a possible clinical utility. Comprehensive investigations are needed to fully determine their role in the ever-evolving landscape of bladder cancer management, especially within the framework of personalized medicine

    Predictive value of PIMREG in the prognosis and response to immune checkpoint blockade of glioma patients

    Get PDF
    Glioma is the most common primary brain tumor in the human brain. The present study was designed to explore the expression of PIMREG in glioma and its relevance to the clinicopathological features and prognosis of glioma patients. The correlations of PIMREG with the infiltrating levels of immune cells and its relevance to the response to immunotherapy were also investigated. PIMREG expression in glioma was analyzed based on the GEO, TCGA, and HPA databases. Kaplan–Meier survival analysis was used to examine the predictive value of PIMREG for the prognosis of patients with glioma. The correlation between the infiltrating levels of immune cells in glioma and PIMREG was analyzed using the CIBERSORT algorithm and TIMRE database. The correlation between PIMREG and immune checkpoints and its correlation with the patients’ responses to immunotherapy were analyzed using R software and the GEPIA dataset. Cell experiments were conducted to verify the action of PIMREG in glioma cell migration and invasion. We found that PIMREG expression was upregulated in gliomas and positively associated with WHO grade. High PIMREG expression was correlated with poor prognosis of LGG, prognosis of all WHO grade gliomas, and prognosis of recurrent gliomas. PIMREG was related to the infiltration of several immune cell types, such as M1 and M2 macrophages, monocytes and CD8+ T cells. Moreover, PIMREG was correlated with immune checkpoints in glioma and correlated with patients’ responses to immunotherapy. KEGG pathway enrichment and GO functional analysis illustrated that PIMREG was related to multiple tumor- and immune-related pathways. In conclusion, PIMREG overexpression in gliomas is associated with poor prognosis of patients with glioma and is related to immune cell infiltrates and the responses to immunotherapy

    Transmembrane and coiled-coil domains 3 is a diagnostic biomarker for predicting immune checkpoint blockade efficacy in hepatocellular carcinoma

    Get PDF
    Liver hepatocellular carcinoma (LIHC) is a malignancy with a high mortality and morbidity rate worldwide. However, the pathogenesis of LIHC has still not been thoroughly studied. Transmembrane and coiled-coil domains 3 (TMCO3) encodes a monovalent cation, a member of the proton transducer 2 (CPA2) family of transporter proteins. In the present study, TMCO3 expression and its relationship with cancer prognosis, as well as its immunological role in LIHC were studied by bioinformatic analysis. We found the significant overexpression of TMCO3 in LIHC in the TCGA, HCCDB, and GEO databases. In LIHC patients, high TMCO3 expression was related to poorer overall survival (OS) and TMCO3 had good predictive accuracy for prognosis. Moreover, TMCO3 was linked to the infiltrates of certain immune cells in LIHC. The correlation of TMCO3 with immune checkpoints was also revealed. Moreover, patients with LIHC with low TMCO3 expression showed a better response to immune checkpoint blockade (ICB) than those with LIHC with high TMCO3 expression. GO and KEGG enrichment analyses indicated that TMCO3 was probably involved in the microtubule cytoskeleton organization involved in mitosis, small GTPase mediated signal transduction, and TGF-β pathway. In conclusion, TMCO3 may be a potential biomarker for LIHC prognosis and immunotherapy

    Baicalin Depresses the Sympathoexcitatory Reflex Induced by Myocardial Ischemia via the Dorsal Root Ganglia

    Get PDF
    Myocardial ischemia (MI) is one of the major causes of death in cardiac diseases. Purinergic signaling is involved in bidirectional neuronal-glial communication in the primary sensory ganglia. The sensory neuritis of cardiac afferent neurons in cervical dorsal root ganglion (cDRG) interacts with cardiac sympathetic efferent postganglionic neurons, forming feedback loops. The P2Y12 receptor is expressed in satellite glial cells (SGCs) of DRG. Baicalin is a major active ingredient extracted from natural herbal medicines, which has anti-inflammatory and strong anti-oxidation properties. In this study we investigated the effect of baicalin on P2Y12 receptor in the cervical DRG SGC-mediated sympathoexcitatory reflex, which is increased during MI. The results showed that the expression of P2Y12 receptor mRNA and protein in DRG, and the co-localization values of P2Y12 receptor and glial fibrillary acidic protein (GFAP) in cDRG SGCs were increased after MI. The activated SGCs increased IL-1β protein expression and elevated Akt phosphorylation in cDRG. Baicalin treatment inhibited the upregulation of the P2Y12 receptor, GFAP protein and Akt phosphorylation in cDRG neurons/SGCs. The stellate ganglia (SG) affect cardiac sympathetic activity. Baicalin treatment also decreased the upregulation of the P2Y12 receptor, GFAP protein in the SG. The P2Y12 agonist, 2Me-SADP, increased [Ca2+]i in HEK293 cells transfected with the P2Y12 receptor plasmid and SGCs in cDRG. These results indicate that application of baicalin alleviates pathologic sympathetic activity induced by MI via inhibition of afferents in the cDRG

    QTL Characterization of Fusarium Head Blight Resistance in CIMMYT Bread Wheat Line Soru#1

    Get PDF
    Fusarium head blight (FHB) resistant line Soru#1 was hybridized with the German cultivar Naxos to generate 131 recombinant inbred lines for QTL mapping. The population was phenotyped for FHB and associated traits in spray inoculated experiments in El Batán (Mexico), spawn inoculated experiments in Ås (Norway) and point inoculated experiments in Nanjing (China), with two field trials at each location. Genotyping was performed with the Illumina iSelect 90K SNP wheat chip, along with a few SSR and STS markers. A major QTL for FHB after spray and spawn inoculation was detected on 2DLc, explaining 15-22% of the phenotypic variation in different experiments. This QTL remained significant after correction for days to heading (DH) and plant height (PH), while another QTL for FHB detected at the Vrn-A1 locus on 5AL almost disappeared after correction for DH and PH. Minor QTL were detected on chromosomes 2AS, 2DL, 4AL, 4DS and 5DL. In point inoculated experiments, QTL on 2DS, 3AS, 4AL and 5AL were identified in single environments. The mechanism of resistance of Soru#1 to FHB was mainly of Type I for resistance to initial infection, conditioned by the major QTL on 2DLc and minor ones that often coincided with QTL for DH, PH and anther extrusion (AE). This indicates that phenological and morphological traits and flowering biology play important roles in resistance/escape of FHB. SNPs tightly linked to resistance QTL, particularly 2DLc, could be utilized in breeding programs to facilitate the transfer and selection of those QTL

    HeMoDU: High-Efficiency Multi-Object Detection Algorithm for Unmanned Aerial Vehicles on Urban Roads

    No full text
    Unmanned aerial vehicle (UAV)-based object detection methods are widely used in traffic detection due to their high flexibility and extensive coverage. In recent years, with the increasing complexity of the urban road environment, UAV object detection algorithms based on deep learning have gradually become a research hotspot. However, how to further improve algorithmic efficiency in response to the numerous and rapidly changing road elements, and thus achieve high-speed and accurate road object detection, remains a challenging issue. Given this context, this paper proposes the high-efficiency multi-object detection algorithm for UAVs (HeMoDU). HeMoDU reconstructs a state-of-the-art, deep-learning-based object detection model and optimizes several aspects to improve computational efficiency and detection accuracy. To validate the performance of HeMoDU in urban road environments, this paper uses the public urban road datasets VisDrone2019 and UA-DETRAC for evaluation. The experimental results show that the HeMoDU model effectively improves the speed and accuracy of UAV object detection

    G3BP2, a stress granule assembly factor, is dispensable for spermatogenesis in mice

    No full text
    Background Spermatogenesis is a complex process that includes mitosis, meiosis, and spermiogenesis. During spermatogenesis, genetic factors play a vital role inthe formation of properly functioning sperm. GTPase-activating protein (SH3 domain)-binding protein 2 (G3BP2) is known to take part in immune responses, mRNA transport, and stress-granule assembly. However, its role in male fertility is unclear. Here, we generated a G3bp2 conditional knockout (cKO) mouse model to explore the function of G3BP2 in male fertility. Methods Polymerase chain reaction (PCR) and western blotting (WB) were used to confirm testis-specific G3bp2 knockout. Hematoxylin-eosin (HE) staining to observe testicular morphology and epididymal structure. Computer-aided sperm analysis (CASA) to detect sperm concentration and motility. Terminal deoxynucleotidyl transferase-dUTP nick-end labeling (TUNEL) assay was used to detect apoptotic cells. Results We found that cKO male mice are fertile with the normal morphology of the testis and sperm. Additionally, CASA of the semen from cKO mice showed that they all had a similar sperm concentration and motility. In addition, sperm from these mice exhibited a similar morphology. But the tunnel assay revealed increased apoptosis in their testes relative to the level in the wild type (WT). Conclusion Together, our data demonstrate that G3BP2 is dispensable for spermatogenesis and male fertility in mice albeit with the increased germ-cell apoptosis
    • …
    corecore