2 research outputs found

    The Role of MXene Surface Terminations on Peptide Transportation in Nanopore Sensing

    No full text
    Nanopores with two-dimensional materials have various advantages in sensing, but the fast translocation of molecules hinders their scale-up applications. In this work, we investigate the influence of −F, −O, and −OH surface terminations on the translocation of peptides through MXene nanopores. We find that the longest dwell time always occurs when peptides pass through the Ti3C2O2 nanopores. This elongated dwell time is induced by the strongest interaction between peptides and the Ti3C2O2 membrane, in which the van der Waals interactions dominate. Compared to the other two MXene nanopores, the braking effect is indicated during the whole translocation process, which evidence the advantage of Ti3C2O2 in nanopore sensing. Our work demonstrates that membrane surface chemistry has a great influence on the translocation of peptides, which can be introduced in the design of nanopores for a better performance

    Transport and Thermodynamic Properties of KFSI in TEP by Operando Raman Gradient Analysis

    No full text
    Understanding and characterizing the transport and thermodynamic properties of electrolytes are critical for optimizing battery performance. In this study, we employ operando Raman gradient analysis (ORGA) to characterize the concentration-dependent diffusion coefficient, transference number, ionic conductivity, and thermodynamic factor of potassium bis(fluorosulfonyl)imide (KFSI) in triethyl phosphate (TEP), an ideal model system and one of the most promising K-ion battery electrolytes. ORGA demonstrates results consistent with conventional state-of-the-art methods while proving to be significantly more electrolyte- and time-efficient. Additionally, we probe, for the first time, the concentration-dependent transport and thermodynamic properties of KFSI-TEP, providing key parameters for K-ion battery modeling
    corecore