216 research outputs found

    Isolation and Characteristics of a Bacterial Strain for Deodorization of Dimethyl Sulfide

    Get PDF
    AbstractThe removal characteristics of dimethyl sulfide (DMS) with a peat packed tower were studied. The peat itself did not remove DMS. The peat inoculated with activated sludge as a source of microorganisms showed an efficient removal of DMS. Dominant microorganisms for degradation of DMS in the peat packed tower were some chemolithotrophic and non-acidophilic sulfur-oxidizing microorganisms originating from sludge. A dominant DMS-oxidizing strain Au7 was isolated and identified as chemolithotrophic Thiobacilli. Product of DMS oxidation by strain Au7 was sulfate. The optimum pH of DMS removal by strain Au7 was 7-5.45

    Angle-selective perfect absorption with two-dimensional materials

    Get PDF
    Two-dimensional (2D) materials have great potential in photonic and optoelectronic devices. However, the relatively weak light absorption in 2D materials hinders their application in practical devices. Here, we propose a general approach to achieve angle-selective perfect light absorption in 2D materials. As a demonstration of the concept, we experimentally show giant light absorption by placing large-area single-layer graphene on a structure consisting of a chalcogenide layer atop a mirror and achieving a total absorption of 77.6% in the mid-infrared wavelength range (~13 μm), where the graphene contributes a record-high 47.2% absorptivity of mid-infrared light. Construction of such an angle-selective thin optical element is important for solar and thermal energy harvesting, photo-detection and sensing applications. Our study points to a new opportunity to combine 2D materials with photonic structures to enable novel device applications

    Growth and applications of two-dimensional single crystals

    Full text link
    Two-dimensional (2D) materials have received extensive research attentions over the past two decades due to their intriguing physical properties (such as the ultrahigh mobility and strong light-matter interaction at atomic thickness) and a broad range of potential applications (especially in the fields of electronics and optoelectronics). The growth of single-crystal 2D materials is the prerequisite to realize 2D-based high-performance applications. In this review, we aim to provide an in-depth analysis of the state-of-the-art technology for the growth and applications of 2D materials, with particular emphasis on single crystals. We first summarize the major growth strategies for monolayer 2D single crystals. Following that, we discuss the growth of multilayer single crystals, including the control of thickness, stacking sequence, and heterostructure composition. Then we highlight the exploration of 2D single crystals in electronic and optoelectronic devices. Finally, a perspective is given to outline the research opportunities and the remaining challenges in this field

    Efficacy and safety of spot heating and ultrasound irradiation on in vitro and in vivo thrombolysis models

    Get PDF
    The feasibility of transcranial sonothrombolysis has been demonstrated, although little is known about the relationships between thermal or mechanical mechanisms and thrombolytic outcomes. Therefore, the present study aims to reveal the effect and safety of temperature and ultrasound through in vitro and in vivo thrombolysis models. Artificial clots in microtubes were heated in a water bath or sonicated by ultrasound irradiation, and then clots weight decrease with rising temperature and sonication time was confirmed. In the in vitro thrombotic occlusion model, based on spot heating, clot volume was reduced and clots moved to the distal side, followed by recanalization of the occlusion. In the in vivo study, the common carotid artery of rats was exposed to a spot heater or to sonication. No brain infarct or brain blood barrier disruption was shown, but endothelial junctional dysintegrity and an inflammatory response in the carotid artery were detected. The present spot heating and ultrasound irradiation models seem to be effective for disintegrating clots in vitro, but the safety of the in vivo model was not fully supported by the data. However, the data indicates that a shorter time exposure could be less invasive than a longer exposure. </jats:p

    Protective Effect of Rivaroxaban Against Amyloid Pathology and Neuroinflammation Through Inhibiting PAR-1 and PAR-2 in Alzheimer’s Disease Mice

    Get PDF
    Background: Recent studies have revealed that atrial fibrillation (AF) patients have a high risk of developing cognitive impairment, vascular dementia, and Alzheimer’s disease (AD). Some reports suggest that the application of oral anticoagulant with an appropriate dose may have a preventive effect on AD. However, which oral anticoagulant drug is more appropriate for preventing AD and the underlying mechanism(s) is still unknown. Objective: The aim of the present study was to assess the treatment effect of rivaroxaban administration as well as investigate the roles of PAR-1 and PAR-2 in the AD + CAA mice model. Methods: In the present study, we compared a traditional oral anticoagulant, warfarin, and a direct oral anticoagulant (DOAC), rivaroxaban, via long-term administration to an AD with cerebral amyloid angiopathy (CAA) mice model. Results: Rivaroxaban treatment attenuated neuroinflammation, blood-brain barrier dysfunction, memory deficits, and amyloid-β deposition through PAR-1/PAR-2 inhibition in the AD + CAA mice model compared with warfarin and no-treatment groups. Conclusion: The present study demonstrates that rivaroxaban can attenuate AD progress and can be a potential choice to prevent AD

    L-shaped association of serum calcium with all-cause and CVD mortality in the US adults: A population-based prospective cohort study

    Get PDF
    BackgroundCalcium is involved in many biological processes, but the impact of serum calcium levels on long-term mortality in general populations has been rarely investigated.MethodsThis prospective cohort study analyzed data from the National Health and Nutrition Examination Survey (1999–2018). All-cause mortality, cardiovascular disease (CVD) mortality, and cancer mortality were obtained through linkage to the National Death Index. Survey-weighted multivariate Cox regression was performed to compute hazard ratios (HRs) and 95% confidential intervals (CIs) for the associations of calcium levels with risks of mortality. Restricted cubic spline analyses were performed to examine the non-linear association of calcium levels with all-cause and disease-specific mortality.ResultsA total of 51,042 individuals were included in the current study. During an average of 9.7 years of follow-up, 7,592 all-cause deaths were identified, including 2,391 CVD deaths and 1,641 cancer deaths. Compared with participants in the first quartile (Q1) of serum calcium level [≤2.299 mmol/L], the risk of all-cause mortality was lower for participants in the second quartile (Q2) [2.300–2.349 mmol/L], the third quartile (Q3) [2.350–2.424 mmol/L] and the fourth quartile (Q4) [≥2.425 mmol/L] with multivariable-adjusted HRs of 0.81 (95% CI, 0.74–0.88), 0.78 (95% CI, 0.71–0.86), and 0.80 (95% CI, 0.73, 0.88). Similar associations were observed for CVD mortality, with HRs of 0.82 (95% CI, 0.71–0.95), 0.87 (95% CI, 0.74–1.02), and 0.83 (95% CI, 0.72, 0.97) in Q2–Q4 quartile. Furthermore, the L-shaped non-linear associations were detected for serum calcium with the risk of all-cause mortality. Below the median of 2.350 mmol/L, per 0.1 mmol/L higher serum calcium was associated with a 24% lower risk of all-cause mortality (HR: 0.76, 95% CI, 0.70–0.83), however, no significant changes were observed when serum calcium was above the median. Similar L-shaped associations were detected for serum calcium with the risk of CVD mortality with a 25% reduction in the risk of CVD death per 0.1 mmol/L higher serum calcium below the median (HR: 0.75, 95% CI, 0.65–0.86).ConclusionL-shaped associations of serum calcium with all-cause and CVD mortality were observed in US adults, and hypocalcemia was associated with a higher risk of all-cause mortality and CVD mortality

    Permo-Triassic detrital records of South China and implications for the Indosinian events in East Asia

    Get PDF
    This work was supported by the National Natural Science Foundation of China (Grant No. 41602105, 41672106 and 41530966) and China Postdoctoral Science Foundation (Grant No. 2016M590655), the Fundamental Research Funds for the Central Universities, Ocean University of China. Peter Cawood acknowledges support from the Australian Research Council grant FL160100168.Provenance analyses of Lower to Middle Triassic strata from the Greater Youjiang Basin along with the Permian strata of Hainan Island, provide a record of the collisional assembly of the South China Craton and Indochina Block and their incorporation into Asia. Detrital zircons from Lower and Middle Triassic samples show similar overall age spectra ranging from Archean to Triassic with major age groups at 300–250 Ma, 480–420 Ma, and 1200–900 Ma, as well as at 400–300 Ma in one Triassic sample. Permian siltstones from Hainan Island, to the southeast of the Greater Youjiang Basin, record different age spectra with major age groups at 400–300 Ma and 530–420 Ma and subordinate components at 1200–900 Ma and 1900–1700 Ma. These age data in combination with available paleocurrent data and regional geological relations suggest that Precambrian detrital zircons were derived from the Precambrian basement or recycled from the overlying early Paleozoic sedimentary rocks that contain Precambrian detritus. Early Paleozoic detrital zircons were derived from igneous rocks in the South China Craton. Devonian-Triassic detrital zircons in the Triassic strata were likely sourced from coeval magmatic activity related to closure of Paleo-Tethys branch ocean that lay to the southwest, whereas 400–300 Ma detrital zircons in the Permian siltstones of Hainan Island were likely derived from a Paleozoic magmatic arc source that extended along the eastern-southeastern margin of China from Hainan Island to Japan in response to subduction of the Paleo-Pacific oceanic crust. Detrital zircon, trace element, and sandstone modal data for Permo-Triassic strata from the Greater Youjiang Basin indicate that the basin evolved from a trailing-edge passive margin setting to a peripheral foreland basin during closure of the Paleo-Tethys Ocean and collision between Indochina and South China. The initiation time of the foreland basin decreases from southeast to southwest across the basin, probably reflecting oblique collision. In contrast, the Permian strata on Hainan Island record a provenance history distinct from the Greater Youjiang Basin, which is related to late Paleozoic to Mesozoic subduction of the Paleo-Pacific Plate beneath South China.PostprintPeer reviewe

    Prognostic Value of an Inflammation-Related Index in 6,865 Chinese Patients With Postoperative Digestive Tract Cancers: The FIESTA Study

    Get PDF
    Objectives: We sought to determine the optimal cutting points for two inflammatory biomarkers, neutrophil-to-lymphocyte ratio (NLR), and platelet-to-lymphocyte ratio (PLR), to assess their prognostic value in patients with postoperative digestive tract cancers overall and by cancer sites, and further to construct an inflammation-related index based on the two biomarkers and assess its predictive performance.Methods: Total 6,865 assessable patients with digestive tract cancers who underwent tumor resection were consecutively enrolled from Fujian Cancer Hospital between January 2000 and December 2010, including 2535/3012/1318 patients with esophageal/gastric/colorectal cancer. The latest follow-up (median: 44.9 months) ended in December 2015. Optimal cutting points were determined using survival tree analysis overall and by cancer sites.Results: Among all study patients, the optimal cutting points were 2.07 and 168.50 to define high and low NLR and PLR, respectively. High NLR (hazard ratio [HR]: 1.48, 95% confidence interval [CI]: 1.37–1.61) and high PLR (HR: 1.41, 95% CI: 1.29–1.53) were associated with a significantly increased risk for the mortality of digestive tract cancers as a whole. By cancer sites, effect-size estimates were comparable and statistically significant. Elevation over the selected optimal cutting points for both NLR and PLR was associated with 1.69-fold increased risk of cancer-specific mortality compared to patients with simultaneously low NLR and PLR among all study patients, and this association persisted by cancer sites, especially for gastric cancer.Conclusions: Our findings demonstrate that the preoperative integrated NLR and PLR, as an inflammation-related index, is a significant independent predictor for postoperative mortality in Chinese patients with digestive tract cancers both overall and by cancer sites
    • …
    corecore