352 research outputs found

    Seagrass-Mediated Carbonate Dissolution and Early Diagenesis in Bahamas Bank Sediments

    Get PDF
    This dissertation presents the results of studies examining the role that seagrasses play in carbonate dissolution and early diagenesis of Bahamas Bank sediments. Three aspects of this problem are addressed: (1) stable carbon isotopes as an indicator of early diagenesis of carbonates, using results of a field study; (2) carbonate dissolution stoichiometry and carbonate reprecipitation, using the results from closed-system sediment incubation studies; (3) carbonate dissolution and reprecipitation across the broader Bahamas Bank. In Chapter II, I examined δ13C in the dissolved inorganic carbon (DIC) of sediments with various degrees of seagrass densities. In low seagrass density and bare oolitic sand sediments, isotope mass balance could be explained by 1:1 mixing of DIC from carbonate dissolution and aerobic respiration. In contrast, pore water DIC in dense seagrass sediments was more enriched in 13C than predicted by the simple mixing model. A carbonate dissolution/reprecipitation model was proposed to explain these observations. In Chapter III, a series of closed-system sediment incubation experiments was carried out under controlled oxygen input rates (i) to further test the carbonate dissolution/reprecipitation model, (ii) to calculate reprecipitating carbonate phases, and (iii) to examine the relationship between the rates of oxygen consumption and carbonate dissolution in the these carbonate sediments. The carbonate reprecipitation model adequately explained pore water DIC 13C enrichment when dissolution and reprecipitation occur. Furthermore, using pore water data and solid phase analyses and assuming a high magnesium calcite (HMC) phase with ∼12 mole% Mg dissolved in these sediments, the reprecipitated carbonates had only a slightly lower Mg content than the starting material. Chapter IV presents the investigation of carbonate reprecipitation and dissolution mediated by seagrass based on an extensive pore water data set on the Bahamas Bank scale. A numerical advection-diffusion-reaction (ADR) model was used to calculate depth integrated reaction rates (i.e., fluxes at the sediment-water interface). The carbonate dissolution flux was then further examined as a function of seagrass density and sediment permeability. Based on the model results, a positive linear correlation was found between carbonate dissolution and leaf area index (LAI), while carbonate dissolution and sediment permeability showed no significant correlation. Carbon dissolution was found to be the likely dominant carbonate removal mechanism that accounts for ∼50% of gross carbonate production

    Empirical analysis of the ship-transport network of China

    Full text link
    Structural properties of the ship-transport network of China (STNC) are studied in the light of recent investigations of complex networks. STNC is composed of a set of routes and ports located along the sea or river. Network properties including the degree distribution, degree correlations, clustering, shortest path length, centrality and betweenness are studied in different definition of network topology. It is found that geographical constraint plays an important role in the network topology of STNC. We also study the traffic flow of STNC based on the weighted network representation, and demonstrate the weight distribution can be described by power law or exponential function depending on the assumed definition of network topology. Other features related to STNC are also investigated.Comment: 20 pages, 7 figures, 1 tabl

    Shallow Marine Carbonate Dissolution and Early Diagenesis-Implications from an Incubation Study

    Get PDF
    Surface carbonate sediments fro, sites on the Bahamas Bank with different seagrass densities were incubated across a range of O2 delivery rates, to study the controls on metabolic carbonate dissolution in these sediments. The results continued the 1:1 ratio between the rates of O2 consumption and carbonate dissolution, demonstrating that microbial respiration was the rate-limiting step in metabolic carbonate dissolution. Furthermore, the dissolution we observed was actually net dissolution resulting front Coupled dissolution and reprecipitation. This carbonate reprecipitation occurs on the time scale of days, and significantly alters the pore water dissolved inorganic carbon (DIC) stable isotopic composition. The carbonate reprecipitation/dissolution ratios observed here were similar to those reported in the literature for other sediments. Dissolution/reprecipitation appeared to involve preferential dissolution of high magnesium calcite and reprecipitation of a carbonate phase with a M content that was only slightly lower than that of the dissolving phase, This result agrees with conclusions in the literature that Ostwald ripening may be responsible for this reprecipitation

    Rates of Carbonate Dissolution in Permeable Sediments Estimated From Porewater Profiles: The Role of Sea Grasses

    Get PDF
    In this study we estimate sediment carbonate dissolution rates for sandy sea grass sediments on the Bahamas Bank using an inverse pore-water advection/diffusion/reaction model constrained by field observations. This model accounts for sea grass O2 input to these sediments, and also parameterizes pore-water advection through these permeable sediments as a nonlocal exchange process. The resulting rates of carbonate dissolution are positively correlated with sea grass density, and are comparable with previous rate estimates for Florida Bay sediments. In contrast, the advective uptake of O2 by these sediments decreased with increasing sea grass density. This suggests that the competing interplay between bottom-water flow, near-seabed pressure gradients, and the presence of a sea grass canopy is important in controlling this type of sediment oxygen uptake. When the carbonate dissolution rates estimated here are examined in the context of carbonate budgets for shallow-water carbonate platforms systems, they suggest that carbonate dissolution may be a significant loss term in these budgets. Sea grass-mediated carbonate dissolution may also exert a negative feedback on rising atmospheric CO2, although the magnitude of this effect remains to be quantified

    The Widespread Occurrence of Coupled Carbonate Dissolution/Reprecipitation in Surface Sediments on the Bahamas Bank

    Get PDF
    Using two complimentary approaches (pore water advection/diffusion/reaction modeling and stable isotope mass balance calculations) we show that carbonate dissolution/reprecipitation occurs on early diagenetic time scales across a broad range of sediments on the Great Bahamas Bank. The input of oxygen into the sediments, which strongly controls sediment carbonate dissolution, has two major sources belowground input by seagrasses (that is, seagrass O2 pumping), and permeability-driven advective pore water exchange. The relative importance of these O2 delivery mechanisms depends on both seagrass density, and on how bottom water flow interacts with the seagrass canopy and leads to this advective exchange. Dissolution appears to involve the preferential dissolution of high-Mg calcite, and the rates of dissolution increase linearly with increasing seagrass density. Isotopic evidence of dissolution/reprecipitation is consistent with the occurrence of Ostwald ripening as the mechanism of reprecipitation, in which smaller crystals dissolve and then reprecipitate as larger crystals, with little or no change in mineralogy. Estimates of the aerially-integrated dissolution flux on the Bahamas Bank suggest that carbonate dissolution is an important loss term in the budget of shallow water carbonate sediments, and that on-bank carbonate dissolution, rather than offshore transport, may represent an important sink for gross shallow water carbonate production. Dissolution in carbonate bank and bay sediments may also be a significant alkalinity source to the surface ocean, and should be considered in global alkalinity/carbonate budget. Finally, coupled dissolution/reprecipitation may have a major impact on the stable isotope composition of carbonate sediments that are ultimately preserved in the rock record. These processes may therefore need to be considered, for example, when using carbon isotope records to obtain information on the operation of the global carbon cycle during the Phanerozoic

    Effects of precipitation variation and trampling disturbance on seedling emergence of annual plants in a semi-arid grassland

    Get PDF
    Precipitation change and grazing are the main factors influencing vegetation structure and dynamics in semi-arid grassland. However, the effects of precipitation variation and livestock trampling on the seedling emergence patterns of plants remain largely unknown. In this study, an experiment with four gradients of trampling (no-trampling, light, moderate, and heavy) and three precipitation treatments (ambient precipitation, +30% precipitation, and −30% precipitation) was conducted to assess the effects of trampling disturbance and precipitation variation on seedling emergence of annual plants. The results showed that an increase in precipitation significantly improved total seedling emergence by 3.5–3.6 times and seedling density of grasses by more than 4.1 times under trampling conditions, while significantly improving total seedling emergence and density of forbs under no-trampling conditions. Moreover, +30% precipitation significantly improved the seedling proportion of grasses under light, moderate, and heavy trampling, while decreasing the seedling proportion of forbs. Seedling emergence of forbs was more sensitive to trampling disturbance, and seedling emergence of grasses was more sensitive to precipitation changes, especially under trampling conditions. Light and moderate trampling with a +30% precipitation increase promoted seedling emergence of grasses, and no trampling with a +30% precipitation increase improved seedling emergence of forbs. Thus, targeted grazing management measures should be implemented for plant communities dominated by either grasses or forbs under changing precipitation conditions
    • …
    corecore