33 research outputs found

    Automated Detection of High-Frequency Oscillations in Epilepsy Based on a Convolutional Neural Network

    Get PDF
    Epilepsy is one of the most common chronic neurological diseases. High-frequency oscillations (HFOs) have emerged as promising biomarkers for the epileptogenic zone. However, visual marking of HFOs is a time-consuming and laborious process. Several automated techniques have been proposed to detect HFOs, yet these are still far from being suitable for application in a clinical setting. Here, ripples and fast ripples from intracranial electroencephalograms were detected in six patients with intractable epilepsy using a convolutional neural network (CNN) method. This approach proved more accurate than using four other HFO detectors integrated in RIPPLELAB, providing a higher sensitivity (77.04% for ripples and 83.23% for fast ripples) and specificity (72.27% for ripples and 79.36% for fast ripples) for HFO detection. Furthermore, for one patient, the Cohen's kappa coefficients comparing automated detection and visual analysis results were 0.541 for ripples and 0.777 for fast ripples. Hence, our automated detector was capable of reliable estimates of ripples and fast ripples with higher sensitivity and specificity than four other HFO detectors. Our detector may be used to assist clinicians in locating epileptogenic zone in the future

    The Antioxidative, Antiaging, and Hepatoprotective Effects of Alkali-Extractable Polysaccharides by Agaricus bisporus

    Get PDF
    The aim of this work was designed to investigate the antioxidant, antiaging, and hepatoprotective effects of alkali-extractable polysaccharides (AlAPS) and their three purified fractions (AlAPS-1, AlAPS-2, and AlAPS-3) from Agaricus bisporus in D-galactose induced aging mice. For in vitro antioxidant analysis, both AlAPS and its fractions exhibited moderate reducing power, Fe2+-chelating activities, and potent scavenging activities on hydroxyl and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals. The in vivo results demonstrated that the polysaccharides, especially AlAPS-2, showed potential antiaging and hepatoprotective effects by enhancing the antioxidant status, decreasing serum hepatic enzyme activities, and improving the lipid metabolism. This study suggested that the polysaccharides extracted and purified from A. bisporus could be exploited as a potent dietary supplement to attenuate aging and prevent age-related diseases

    A versatile messenger for chirality communication: asymmetric silica framework

    No full text
    Asymmetric tetrahedral carbon is the basic structural unit of many organic compounds in life and its molecular chirality plays a key role in regulating biological functions. Silica (SiO2) is highly earth abundant and its basic unit is also the tetrahedral form of SiO4. However, much less attention has been paid to the molecular-scale chirality of SiO2 frameworks with repeating SiO4 units because it is challenging to enantioselectively control the molecular structures of SiO2. Research into the chiral molecular structures of SiO2 deserves to be a significant topic for understanding widespread chiral phenomena and for exploring the chiral properties hidden in inorganic matter. This review highlights the asymmetric synthesis strategies that endow SiO2 with chirality transferred from asymmetric carbon at the molecular scale. The chirality transfer ability of SiO2 is also demonstrated for the construction of various inorganic and/or organic chiral materials with a wide range of applications in asymmetric synthesis, circularly polarized luminescence and Raman scattering-based chiral recognition

    Recent advances in circularly polarized luminescence generated by inorganic materials

    No full text
    Circularly polarized luminescence (CPL) is an interesting phenomenon that represents the unequal emission of left- and right-handed polarized light from an emitter. CPL is promising in chirality characterization and various optical applications. Traditionally, research on CPL has been centered on organic substances. Nevertheless, in recent years, CPL based on inorganic substrates has also become a nascent topic, which is significant in exploring novel chirality- and luminescence-related properties and applications in inorganic materials. This short review summarizes the recent progress made regarding the following two aspects: 1) how to endow common inorganic luminophores with CPL activity; 2) how to use emerging chiral inorganic nanomaterials to design CPL-active systems. The general synthesis strategies, optical properties, applications and outlook of CPL-active inorganic materials are also demonstrated

    Retinoic acid improve germ cell differentiation from human embryonic stem cells

    No full text
    Background: Creation of artificial gametes may provide a universal solution for these patients with no gametes. Stem cell technology may provide a way to obtain fully functional gametes. Retinoic acid (RA) can initiate meiosis. Several studies have demonstrated that RA can promote sperm cells differentiation from mouse embryonic stem cells (mESCs) and other cells from human embryonic stem cells (hESCs). Objective: We sought to determine whether RA could promote differentiation of germ cells from hESCs. Materials and Methods: hESCs were differentiated as embryoid bodies (EBs) in suspension with all-trans RA (atRA) or without atRA for 0, 1, 3, 5 and 7 days, and then the expression of VASA, SCP3, GDF9 and TEKT1 were compared by real-time PCR. The statistical differences were evaluated by one way ANOVA. Results: The expression of germ cell-specific markers including the gonocyte marker VASA, the meiotic marker SCP3, and post meiotic markers, GDF9 and TEKT1, all increased in the presence and absence of RA as EB differentiation progressed. In addition, the expression of these markers increased an average of 9.3, 6.9, 7.2 and 11.8 fold respectively in the presence of RA, compared to the absence of RA, over 5 days differentiation. Conclusion: Our results indicate that hESCs may have the potential to differentiate to primordial germ cells (PGCs) and early gametes. RA can improve germ cells differentiation from hESCs

    Elevated Progesterone Levels on the Day of Oocyte Maturation May Affect Top Quality Embryo IVF Cycles.

    No full text
    In contrast to the impact of elevated progesterone on endometrial receptivity, the data on whether increased progesterone levels affects the quality of embryos is still limited. This study retrospectively enrolled 4,236 fresh in vitro fertilization (IVF) cycles and sought to determine whether increased progesterone is associated with adverse outcomes with regard to top quality embryos (TQE). The results showed that the TQE rate significantly correlated with progesterone levels on the day of human chorionic gonadotropin (hCG) trigger (P = 0.009). Multivariate linear regression analysis of factors related to the TQE rate, in conventional IVF cycles, showed that the TQE rate was negatively associated with progesterone concentration on the day of hCG (OR was -1.658, 95% CI: -2.806 to -0.510, P = 0.005). When the serum progesterone level was within the interval 2.0-2.5 ng/ml, the TQE rate was significantly lower (P 2.5 ng/ml. Then, we choose a progesterone level at 1.5ng/ml, 2.0 ng/ml and 2.5 ng/ml as cut-off points to verify this result. We found that the TQE rate was significantly different (P 2.0 ng/ml. In conclusion, the results of this study clearly demonstrated a negative effect of elevated progesterone levels on the day of hCG trigger, on TQE rate, regardless of the basal FSH, the total gonadotropin, the age of the woman, or the time of ovarian stimulation. These data demonstrate that elevated progesterone levels (>2.0 ng/ml) before oocyte maturation were consistently detrimental to the oocyte
    corecore