11 research outputs found

    Automated Detection of High-Frequency Oscillations in Epilepsy Based on a Convolutional Neural Network

    Get PDF
    Epilepsy is one of the most common chronic neurological diseases. High-frequency oscillations (HFOs) have emerged as promising biomarkers for the epileptogenic zone. However, visual marking of HFOs is a time-consuming and laborious process. Several automated techniques have been proposed to detect HFOs, yet these are still far from being suitable for application in a clinical setting. Here, ripples and fast ripples from intracranial electroencephalograms were detected in six patients with intractable epilepsy using a convolutional neural network (CNN) method. This approach proved more accurate than using four other HFO detectors integrated in RIPPLELAB, providing a higher sensitivity (77.04% for ripples and 83.23% for fast ripples) and specificity (72.27% for ripples and 79.36% for fast ripples) for HFO detection. Furthermore, for one patient, the Cohen's kappa coefficients comparing automated detection and visual analysis results were 0.541 for ripples and 0.777 for fast ripples. Hence, our automated detector was capable of reliable estimates of ripples and fast ripples with higher sensitivity and specificity than four other HFO detectors. Our detector may be used to assist clinicians in locating epileptogenic zone in the future

    Abnormalities of EEG Functional Connectivity and Effective Connectivity in Children with Autism Spectrum Disorder

    No full text
    Autism spectrum disorder (ASD) is a heterogeneous neurodevelopmental disorder that interferes with normal brain development. Brain connectivity may serve as a biomarker for ASD in this respect. This study enrolled a total of 179 children aged 3−10 years (90 typically developed (TD) and 89 with ASD). We used a weighted phase lag index and a directed transfer function to investigate the functional and effective connectivity in children with ASD and TD. Our findings indicated that patients with ASD had local hyper-connectivity of brain regions in functional connectivity and simultaneous significant decrease in effective connectivity across hemispheres. These connectivity abnormalities may help to find biomarkers of ASD

    Research and Application Progress of Silicone Rubber Materials in Aviation

    No full text
    The research progress of heat resistance, cold resistance, electrical conductivity and damping properties of aviation silicone rubber were reviewed in this article. The heat resistance properties of silicone rubber can be enhanced by changing the molecular structure (main chain, end-group, side chain and molecular weight) of the gum and adding special heat-resistance filler. The cold resistance of aviation silicone rubber can be enhanced by adjusting the side chain molecular structure of the gum and the content of different gum chain. The electrical conductivity of silicone rubber can be improved by optimizing, blending and dispersing of conductive particles. The damping property of silicone rubber can be improved by designing and synthesizing of high-molecular polysiloxane damping agent. Furthermore, the application of aviation silicone rubber used in high-low temperature seal, electrical conduction and vibration damping technology are also summarized, and the high performance (for example long-term high temperature resistance, ultralow temperature resistance, high electromagnetic shelding, long-term fatigue resistance vibration damping, quasi constant modulus and so on) of special silicone rubber is the future direction of aviation silicone rubber

    Abnormalities of EEG Functional Connectivity and Effective Connectivity in Children with Autism Spectrum Disorder

    No full text
    Autism spectrum disorder (ASD) is a heterogeneous neurodevelopmental disorder that interferes with normal brain development. Brain connectivity may serve as a biomarker for ASD in this respect. This study enrolled a total of 179 children aged 3−10 years (90 typically developed (TD) and 89 with ASD). We used a weighted phase lag index and a directed transfer function to investigate the functional and effective connectivity in children with ASD and TD. Our findings indicated that patients with ASD had local hyper-connectivity of brain regions in functional connectivity and simultaneous significant decrease in effective connectivity across hemispheres. These connectivity abnormalities may help to find biomarkers of ASD

    Emergence of dominant initiation sites for interictal spikes in rat neocortex

    No full text
    Neuronal populations with unbalanced inhibition can generate interictal spikes (ISs), where each IS starts from a small initiation site and then spreads activation across a larger area. We used in vivo voltage-sensitive dye imaging to map the initiation site of ISs in rat visual cortex disinhibited by epidural application of bicuculline methiodide. Immediately after the application of bicuculline, the IS initiation sites were widely distributed over the entire disinhibited area. After ∼10 min, a small number of sites became “dominant” and initiated the majority of the ISs throughout the course of imaging. Such domination also occurred in cortical slices, which lack long-range connections between the cortex and subcortical structures. This domination of IS initiation sites may allow timing-related plasticity mechanisms to provide a spatial organization where connections projecting outward from the dominant initiation site become strengthened. Understanding the spatiotemporal organization of IS initiation sites may contribute to our understanding of epileptogenesis in its very early stages, because a dominant IS initiation site with strengthened outward connectivity may ultimately develop into a seizure focus

    Pacing Hippocampal Sharp-Wave Ripples With Weak Electric Stimulation

    No full text
    Sharp-wave ripples (SWRs) are spontaneous neuronal population events that occur in the hippocampus during sleep and quiet restfulness, and are thought to play a critical role in the consolidation of episodic memory. SWRs occur at a rate of 30–200 events per minute. Their overall abundance may, however, be reduced with aging and neurodegenerative disease. Here we report that the abundance of SWR within murine hippocampal slices can be increased by paced administration of a weak electrical stimulus, especially when the spontaneously occurring rate is low or compromised. Resultant SWRs have large variations in amplitude and ripple patterns, which are morphologically indistinguishable from those of spontaneous SWRs, despite identical stimulus parameters which presumably activate the same CA3 neurons surrounding the electrode. The stimulus intensity for reliably pacing SWRs is weaker than that required for inducing detectable evoked field potentials in CA1. Moreover, repetitive ~1 Hz stimuli with low intensity can reliably evoke thousands of SWRs without detectable LTD or “habituation.” Our results suggest that weak stimuli may facilitate the spontaneous emergence of SWRs without significantly altering their characteristics. Pacing SWRs with weak electric stimuli could potentially be useful for restoring their abundance in the damaged hippocampus

    Transcranial Direct Current Stimulation Modulates EEG Microstates in Low-Functioning Autism: A Pilot Study

    No full text
    Autism spectrum disorder (ASD) is a heterogeneous disorder that affects several behavioral domains of neurodevelopment. Transcranial direct current stimulation (tDCS) is a new method that modulates motor and cognitive function and may have potential applications in ASD treatment. To identify its potential effects on ASD, differences in electroencephalogram (EEG) microstates were compared between children with typical development (n = 26) and those with ASD (n = 26). Furthermore, children with ASD were divided into a tDCS (experimental) and sham stimulation (control) group, and EEG microstates and Autism Behavior Checklist (ABC) scores before and after tDCS were compared. Microstates A, B, and D differed significantly between children with TD and those with ASD. In the experimental group, the scores of microstates A and C and ABC before tDCS differed from those after tDCS. Conversely, in the control group, neither the EEG microstates nor the ABC scores before the treatment period (sham stimulation) differed from those after the treatment period. This study indicates that tDCS may become a viable treatment for ASD
    corecore