29 research outputs found

    Decreased adiponectin and increased inflammation expression in epicardial adipose tissue in coronary artery disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Disorders of endocrine substances in epicardial adipose tissue are known causes of coronary artery disease (CAD). Adiponectin is associated with cardiovascular disease. However, expression of adiponectin in epicardial adipose tissue and its function in CAD pathogenesis is unclear. This study investigates adiponectin expression in epicardial adipose tissue in CAD patients.</p> <p>Methods</p> <p>Vessels or adipose tissue samples collected from CAD patients and non-CAD controls were examined after immunochemical staining. Adiponectin, cytokines of interleukin-6 (IL-6) and necrosis factor-α (TNF-α) and toll-like receptor 4 (TLR4) expression level in adipose tissue were measured using real-time quantitative RT-PCR. Adiponectin concentrations in peripheral and coronary sinus vein plasma were measured with enzyme-linked immunosorbent assay. Peripheral vein plasma biochemistries were performed with routine laboratory techniques. Monocytes were collected from blood using lymphocyte separation medium. Expression level of cytokines and transcription factor NF-ÎșB were measured to learn the effect of adiponectin on stearic acid-stimulated monocytes. Percentage of TLR4 positive monocytes was analyzed using flow cytometry.</p> <p>Results</p> <p>Histological examination revealed increased macrophage infiltration into epicardial adipose tissue of CAD patients. Decreased adiponectin displayed by real-time quantitative RT-PCR was associated with enhanced cytokines of IL-6 and TNF-α or TLR4 expression level in epicardial adipose tissue, suggesting decreased circulating adiponectin may be useful as a more sensitive predictor for coronary atherosclerosis than routine laboratory examinations. Adiponectin suppressed secretion of IL-6 and TNF-α in stimulated monocytes and TLR4 was expressed on cell surfaces.</p> <p>Conclusions</p> <p>Endocrine disorders in epicardial adipose tissue are strongly linked to CAD, and adiponectin has a protective effect by inhibiting macrophage-mediated inflammation.</p

    Nanobubbles for enhanced ultrasound imaging of tumors

    Get PDF
    The fabrication and initial applications of nanobubbles (NBs) have shown promising results in recent years. A small particle size is a basic requirement for ultrasound contrast-enhanced agents that penetrate tumor blood vessel pores to allow for targeted imaging and therapy. However, the nanoscale size of the particles used has the disadvantage of weakening the imaging ability of clinical diagnostic ultrasound. In this work, we fabricated a lipid NBs contrast-enhanced ultrasound agent and evaluated its passive targeting ability in vivo. The results showed that the NBs were small (436.8 ± 5.7 nm), and in vitro ultrasound imaging suggested that the ultrasonic imaging ability is comparable to that of microbubbles (MBs). In vivo experiments confirmed the ability of NBs to passively target tumor tissues. The NBs remained in the tumor area for a longer period because they exhibited enhanced permeability and retention. Direct evidence was obtained by direct observation of red fluorescence-dyed NBs in tumor tissue using confocal laser scanning microscopy. We have demonstrated the ability to fabricate NBs that can be used for the in vivo contrast-enhanced imaging of tumor tissue and that have potential for drug/gene delivery

    Application of Angiotensin Receptor–Neprilysin Inhibitor in Chronic Kidney Disease Patients: Chinese Expert Consensus

    Get PDF
    Chronic kidney disease (CKD) is a global public health problem, and cardiovascular disease is the most common cause of death in patients with CKD. The incidence and prevalence of cardiovascular events during the early stages of CKD increases significantly with a decline in renal function. More than 50% of dialysis patients die from cardiovascular disease, including coronary heart disease, heart failure, arrhythmia, and sudden cardiac death. Therefore, developing effective methods to control risk factors and improve prognosis is the primary focus during the diagnosis and treatment of CKD. For example, the SPRINT study demonstrated that CKD drugs are effective in reducing cardiovascular and cerebrovascular events by controlling blood pressure. Uncontrolled blood pressure not only increases the risk of these events but also accelerates the progression of CKD. A co-crystal complex of sacubitril, which is a neprilysin inhibitor, and valsartan, which is an angiotensin receptor blockade, has the potential to be widely used against CKD. Sacubitril inhibits neprilysin, which further reduces the degradation of natriuretic peptides and enhances the beneficial effects of the natriuretic peptide system. In contrast, valsartan alone can block the angiotensin II-1 (AT1) receptor and therefore inhibit the renin–angiotensin–aldosterone system. These two components can act synergistically to relax blood vessels, prevent and reverse cardiovascular remodeling, and promote natriuresis. Recent studies have repeatedly confirmed that the first and so far the only angiotensin receptor–neprilysin inhibitor (ARNI) sacubitril/valsartan can reduce blood pressure more effectively than renin–angiotensin system inhibitors and improve the prognosis of heart failure in patients with CKD. Here, we propose clinical recommendations based on an expert consensus to guide ARNI-based therapeutics and reduce the occurrence of cardiovascular events in patients with CKD

    Zr-Modified ZnO for the Selective Oxidation of Cinnamaldehyde to Benzaldehyde

    No full text
    ZnO and Zr-modified ZnO were prepared using a precipitation method and used for the selective oxidation of cinnamaldehyde to benzaldehyde in the present study. The results showed that physicochemical properties of ZnO were significantly affected by the calcination temperature, and calcination of ZnO at 400 &deg;C demonstrated the optimum catalytic activity for the selective oxidation of cinnamaldehyde to benzaldehyde. With 0.01 g ZnO calcined at 400 &deg;C for 2 h as a catalyst, 8.0 g ethanol and 2.0 g cinnamaldehyde reacted at an oxygen pressure of 1.0 MPa and 70 &deg;C for 60 min, resulting in benzaldehyde selectivity of 69.2% and cinnamaldehyde conversion of 16.1%. Zr was the optimal modifier for ZnO: when Zr-modified ZnO was used as the catalyst, benzaldehyde selectivity reached 86.2%, and cinnamaldehyde conversion was 17.6%. The X-ray diffractometer and N2 adsorption&ndash;desorption characterization indicated that doping with Zr could reduce the crystallite size of ZnO (101) and increase the specific surface area of the catalyst, which provided more active sites for the reaction. X-ray photoelectron spectrometer results showed that Zr-doping could exchange the electrons with ZnO and reduce the electron density in the outer layer of Zn, which would further affect benzaldehyde selectivity. The results of CO2 temperature-programmed desorption showed that Zr-modification enhanced the alkalinity of the catalyst surface, which caused the Zr&ndash;ZnO catalyst to exhibit higher catalytic activity

    Accounting for China’s Net Carbon Emissions and Research on the Realization Path of Carbon Neutralization Based on Ecosystem Carbon Sinks

    No full text
    Carbon sinks are an important way to achieve carbon neutrality. In this study, carbon emissions in each year from 2019 to 2060 were predicted by constructing the LEAP (Long-range Energy Alternatives Planning System)-China model. The ecosystem carbon sinks in five representative years of 2012, 2017, 2019, 2030, and 2060 were predicted by reviewing related literature to calculate China’s net carbon emission accounts in these five key years and to quantitatively analyze the path to achieving carbon neutrality in China. The results show that China’s annual carbon emissions will peak in 2028, with a peak of 10.27 billion tons of carbon dioxide; that they will then decrease year by year to 7227 million tons of carbon dioxide in 2060; and that the ecosystem carbon sinks generated by land use are more stable, with a total of approximately 5.5 billion tons of carbon dioxide. To achieve carbon neutrality, a dependence only on ecosystem carbon sinks is insufficient. National energy conservation, voluntary emission reduction by enterprises, and a reliance on new energy and new technologies are needed to ensure the final implementation of China’s carbon neutrality strategy

    Nomogram for Postoperative Headache in Adult Patients Undergoing Elective Cardiac Surgery

    No full text
    Background Postoperative headache (POH) is frequent after cardiac surgery; however, few studies on risk factors for POH exist. The aims of the current study were to explore risk factors related to POH after elective cardiac surgery and to establish a predictive system. Methods and Results Adult patients undergoing elective open‐heart surgery under cardiopulmonary bypass from 2016 to 2020 in 4 cardiac centers were retrospectively included. Two thirds of the patients were randomly allocated to a training set and one third to a validation set. Predictors for POH were selected by univariate and multivariate analysis. POH developed in 3154 of the 13 440 included patients (23.5%) and the overall mortality rate was 2.3%. Eight independent risk factors for POH after elective cardiac surgery were identified, including female sex, younger age, smoking history, chronic headache history, hypertension, lower left ventricular ejection fraction, longer cardiopulmonary bypass time, and more intraoperative transfusion of red blood cells. A nomogram based on the multivariate model was constructed, with reasonable calibration and discrimination, and was well validated. Decision curve analysis revealed good clinical utility. Finally, 3 risk intervals were divided to better facilitate clinical application. Conclusions A nomogram model for POH after elective cardiac surgery was developed and validated using 8 predictors, which may have potential application value in clinical risk assessment, decision‐making, and individualized treatment associated with POH

    Facile Preparation of Mussel-Inspired Polyurethane Hydrogel and Its Rapid Curing Behavior

    No full text
    A facile method was found to incorporate a mussel-inspired adhesive moiety into synthetic polymers, and mussel mimetic polyurethanes were developed as adhesive hydrogels. In these polymers, a urethane backbone was substituted for the polyamide chain of mussel adhesive proteins, and dopamine was appended to mimic the adhesive moiety of adhesive proteins. A series of mussel mimetic polyurethanes were created through a step-growth polymerization based on hexamethylene diisocyanate as a hard segment, PEG having different molecular weights as a soft segment, and lysine-dopamine as a chain extender. Upon a treatment with Fe<sup>3+</sup>, the aqueous mussel mimetic polyurethane solutions can be triggered by pH adjustment to form adhesive hydrogels instantaneously; these materials can be used as injectable adhesive hydrogels. Upon a treatment with NaIO<sub>4</sub>, the mussel mimetic polyurethane solutions can be cured in a controllable period of time. The successful combination of the unique mussel-inspired adhesive moiety with a tunable polyurethane structure can result in a new kind of mussel-inspired adhesive polymers
    corecore