50 research outputs found

    Occupational exposure in swine farm defines human skin and nasal microbiota

    Get PDF
    Anthropogenic environments take an active part in shaping the human microbiome. Herein, we studied skin and nasal microbiota dynamics in response to the exposure in confined and controlled swine farms to decipher the impact of occupational exposure on microbiome formation. The microbiota of volunteers was longitudinally profiled in a 9-months survey, in which the volunteers underwent occupational exposure during 3-month internships in swine farms. By high-throughput sequencing, we showed that occupational exposure compositionally and functionally reshaped the volunteers’ skin and nasal microbiota. The exposure in farm A reduced the microbial diversity of skin and nasal microbiota, whereas the microbiota of skin and nose increased after exposure in farm B. The exposure in different farms resulted in compositionally different microbial patterns, as the abundance of Actinobacteria sharply increased at expense of Firmicutes after exposure in farm A, yet Proteobacteria became the most predominant in the volunteers in farm B. The remodeled microbiota composition due to exposure in farm A appeared to stall and persist, whereas the microbiota of volunteers in farm B showed better resilience to revert to the pre-exposure state within 9 months after the exposure. Several metabolic pathways, for example, the styrene, aminobenzoate, and N-glycan biosynthesis, were significantly altered through our PICRUSt analysis, and notably, the function of beta-lactam resistance was predicted to enrich after exposure in farm A yet decrease in farm B. We proposed that the differently modified microbiota patterns might be coordinated by microbial and non-microbial factors in different swine farms, which were always environment-specific. This study highlights the active role of occupational exposure in defining the skin and nasal microbiota and sheds light on the dynamics of microbial patterns in response to environmental conversion

    Single-cell profiling reveals distinct immune response landscapes in tuberculous pleural effusion and non-TPE

    Get PDF
    BackgroundTuberculosis (TB) is caused by Mycobacterium tuberculosis (Mtb) and remains a major health threat worldwide. However, a detailed understanding of the immune cells and inflammatory mediators in Mtb-infected tissues is still lacking. Tuberculous pleural effusion (TPE), which is characterized by an influx of immune cells to the pleural space, is thus a suitable platform for dissecting complex tissue responses to Mtb infection.MethodsWe employed singe-cell RNA sequencing to 10 pleural fluid (PF) samples from 6 patients with TPE and 4 non-TPEs including 2 samples from patients with TSPE (transudative pleural effusion) and 2 samples with MPE (malignant pleural effusion).ResultCompared to TSPE and MPE, TPE displayed obvious difference in the abundance of major cell types (e.g., NK, CD4+T, Macrophages), which showed notable associations with disease type. Further analyses revealed that the CD4 lymphocyte population in TPE favored a Th1 and Th17 response. Tumor necrosis factors (TNF)-, and XIAP related factor 1 (XAF1)-pathways induced T cell apoptosis in patients with TPE. Immune exhaustion in NK cells was an important feature in TPE. Myeloid cells in TPE displayed stronger functional capacity for phagocytosis, antigen presentation and IFN-γ response, than TSPE and MPE. Systemic elevation of inflammatory response genes and pro-inflammatory cytokines were mainly driven by macrophages in patients with TPE.ConclusionWe provide a tissue immune landscape of PF immune cells, and revealed a distinct local immune response in TPE and non-TPE (TSPE and MPE). These findings will improve our understanding of local TB immunopathogenesis and provide potential targets for TB therapy

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    Anti-Diabetic Nephropathy Activities of Polysaccharides Obtained from Termitornyces albuminosus via Regulation of NF-κB Signaling in db/db Mice

    No full text
    Termitornyces albuminosus is a kind of traditional Chinese edible fungus rich in nutrients and medicinal ingredients, and it has anti-oxidative, analgesic and anti-inflammatory effects. However, the hypoglycemic and nephroprotective effects of polysaccharides separated from T. albuminosus (PTA) have not been reported. The properties of PTA were analyzed in a BKS.Cg-Dock7m +/+ Leprdb/JNju (db/db) mouse model of diabetes. After the administration of PTA for eight weeks, the hypoglycemic and hypolipidemic activities of PTA in the db/db mice were assessed. The results of a cytokine array combined with an enzyme-linked immunosorbent assay confirmed the anti-oxidative and anti-inflammatory activities of PTA. An eight-week administration of PTA caused hypoglycemic and hypolipidemic functioning, as indicated by suppressed plasma glucose levels, as well as the modulation of several cytokines related to glycometabolism, in the sera and kidneys of the mice. PTA treatment also had a protective effect on renal function, restoring renal structures and regulating potential indicators of nephropathy. In the kidneys of the db/db mice, PTA treatment reduced the activation of protein kinase B, the inhibitor of κB kinase alpha and beta, and the inhibitor of κB alpha and nuclear factor-κB (NF-κB). We establish the hypoglycemic, hypolipidemic, and anti-diabetic nephropathy effects of PTA, and we find that the renal protection effects of PTA may be related to anti-inflammatory activity via the regulation of NF-κB signaling

    Robust analysis of a novel PANoptosis-related prognostic gene signature model for hepatocellular carcinoma immune infiltration and therapeutic response

    No full text
    Abstract PANoptosis, an interplay between pyroptosis, apoptosis, and necroptosis, is deeply involved in cancer development and immunity. However, the influence of PANoptosis in hepatocellular carcinoma (HCC) remains to be further investigated. The differentially expressed PANoptosis-related genes (PANRGs) was screened in The Cancer Genome Atlas (TCGA) database. Accordingly, mutation, bioinformatics, and consensus clustering analyses were performed. Then, a prognostic risk model was developed by least absolute shrinkage and selection operator (LASSO) Cox regression. Furthermore, the prognostic value, immunity correlation and therapeutic response prediction ability of risk model were explored. A total of 18 PANRGs were differently expressed in the TCGA-HCC cohort and were mainly involved in cancer- and cell death-related signal pathways. Using unsupervised clustering method, we identified two PANRGs-mediated clustering patterns. The remarkable differences between the two clusters on overall survival (OS) and clinical features were demonstrated respectively. Based on the five-gene prognostic risk model, the calculated PANRG-scores were used to categorize the subgroups as high- and low-risk. Notably, the high-risk subgroup had a dismal prognosis and exhibited much lower immune infiltration levels of mast cells, nature killer cells and pDCs, but higher levels of aDCs, iDCs and Treg cells than those in the low-risk subgroup. Furthermore, we constructed a reliable nomogram combining clinical traits and PANRG-score to predict the OS of HCC patients. The significantly negative correlation between PANoptosis and tumor mutation burden (TMB), ferroptosis were revealed. In drug sensitivity analysis, the high-risk subgroup had a considerably lower TIDE score, suggesting a preferable response to immunotherapy, and may be more sensitive to Tipifarnib, Imatinib, Doxorubicin, and Gemcitabine. The upregulated mRNA expressions of FADD were validated in 16 paired HCC tissues of Guangxi cohort. Based on PANoptosis-related genes, an integrated risk signature was constructed to provide a roadmap for patient stratification and predict HCC patient's prognosis. The patients with the higher PANRG-score may carry a dismal survival and relatively low immune infiltration, but a potential better immunotherapy response. Therefore, future HCC therapy perspectives should emphasize the setting of PANoptosis to achieve a personalized, practicable and effective therapeutic regimen

    Prevalence and Persistence of Ceftiofur-Resistant <i>Escherichia coli</i> in A Chicken Layer Breeding Program

    No full text
    We determined the longitudinal persistence of ceftiofur-resistant Escherichia coli from a chicken breeding farm in China. A total of 150 samples were collected from 5 breeding periods in a flock of layer hens, and the prevalence of ceftiofur-resistant E. coli fluctuated across the 5 chicken breeding stages: eggs, 3.33%; growing period, 100%; early laying period, 36.7%; peak laying period, 66.7% and late laying period, 80%. The most prevalent ceftiofur resistance genes were blaCTX-M-55, blaCMY and blaNDM, and ST101 was the most prevalent and persistent sequence type across the breeding periods. Our results indicated that this breeder flock was heavily contaminated by ST101 ceftiofur-resistant E. coli and that its presence should be intensively monitored on chicken farms

    A Membrane-Bound Biosensor Visualizes Shear Stress-Induced Inhomogeneous Alteration of Cell Membrane Tension

    No full text
    Summary: Cell membrane is the first medium from where a cell senses and responds to external stress stimuli. Exploring the tension changes in cell membrane will help us to understand intracellular force transmission. Here, a biosensor (named MSS) based on fluorescence resonance energy transfer is developed to visualize cell membrane tension. Validity of the biosensor is first verified for the detection of cell membrane tension. Results show a shear stress-induced heterogeneous distribution of membrane tension with the biosensor, which is strengthened by the disruption of microfilaments or enhancement of membrane fluidity, but weakened by the reduction of membrane fluidity or disruption of microtubules. These findings suggest that the MSS biosensor is a beneficial tool to visualize the changes and distribution of cell membrane tension. Besides, cell membrane tension does not display obvious polar distribution, indicating that cellular polarity changes do not first occur on the cell membrane during mechanical transmission. : Sensor; Molecular Biology; Membrane Architecture; Biophysics Subject Areas: Sensor, Molecular Biology, Membrane Architecture, Biophysic
    corecore