45 research outputs found

    <i>D</i><sub><i>5-95</i></sub> residual plot (test set).

    No full text
    This study aims to predict the significant duration (D5-75, D5-95) of seismic motion by employing machine learning algorithms. Based on three parameters (moment magnitude, fault distance, and average shear wave velocity), two additional parameters(fault top depth and epicenter mechanism parameters) were introduced in this study. The XGBoost algorithm is utilized for characteristic parameter optimization analysis to obtain the optimal combination of four parameters. We compare the prediction results of four machine learning algorithms (random forest, XGBoost, BP neural network, and SVM) and develop a new method of significant duration prediction by constructing two fusion models (stacking and weighted averaging). The fusion model demonstrates an improvement in prediction accuracy and generalization ability of the significant duration when compared to single algorithm models based on evaluation indicators and residual values. The accuracy and rationality of the fusion model are validated through comparison with existing research.</div

    MSE variation with iterations number for <i>D</i><sub><i>5-95</i></sub>.

    No full text
    This study aims to predict the significant duration (D5-75, D5-95) of seismic motion by employing machine learning algorithms. Based on three parameters (moment magnitude, fault distance, and average shear wave velocity), two additional parameters(fault top depth and epicenter mechanism parameters) were introduced in this study. The XGBoost algorithm is utilized for characteristic parameter optimization analysis to obtain the optimal combination of four parameters. We compare the prediction results of four machine learning algorithms (random forest, XGBoost, BP neural network, and SVM) and develop a new method of significant duration prediction by constructing two fusion models (stacking and weighted averaging). The fusion model demonstrates an improvement in prediction accuracy and generalization ability of the significant duration when compared to single algorithm models based on evaluation indicators and residual values. The accuracy and rationality of the fusion model are validated through comparison with existing research.</div

    Significant duration distribution with <i>M</i><sub>w</sub>.

    No full text
    This study aims to predict the significant duration (D5-75, D5-95) of seismic motion by employing machine learning algorithms. Based on three parameters (moment magnitude, fault distance, and average shear wave velocity), two additional parameters(fault top depth and epicenter mechanism parameters) were introduced in this study. The XGBoost algorithm is utilized for characteristic parameter optimization analysis to obtain the optimal combination of four parameters. We compare the prediction results of four machine learning algorithms (random forest, XGBoost, BP neural network, and SVM) and develop a new method of significant duration prediction by constructing two fusion models (stacking and weighted averaging). The fusion model demonstrates an improvement in prediction accuracy and generalization ability of the significant duration when compared to single algorithm models based on evaluation indicators and residual values. The accuracy and rationality of the fusion model are validated through comparison with existing research.</div

    Comparison of <i>D</i><sub>5-95</sub> prediction results of fusion model and single model.

    No full text
    Comparison of D5-95 prediction results of fusion model and single model.</p

    Data comparison of different models for <i>D</i><sub><i>5-75</i></sub>.

    No full text
    This study aims to predict the significant duration (D5-75, D5-95) of seismic motion by employing machine learning algorithms. Based on three parameters (moment magnitude, fault distance, and average shear wave velocity), two additional parameters(fault top depth and epicenter mechanism parameters) were introduced in this study. The XGBoost algorithm is utilized for characteristic parameter optimization analysis to obtain the optimal combination of four parameters. We compare the prediction results of four machine learning algorithms (random forest, XGBoost, BP neural network, and SVM) and develop a new method of significant duration prediction by constructing two fusion models (stacking and weighted averaging). The fusion model demonstrates an improvement in prediction accuracy and generalization ability of the significant duration when compared to single algorithm models based on evaluation indicators and residual values. The accuracy and rationality of the fusion model are validated through comparison with existing research.</div

    Significant duration distribution with <i>M</i><sub>w</sub> and <i>V</i><sub><i>s30</i></sub>.

    No full text
    Significant duration distribution with Mw and Vs30.</p

    BP neural network structure diagram.

    No full text
    This study aims to predict the significant duration (D5-75, D5-95) of seismic motion by employing machine learning algorithms. Based on three parameters (moment magnitude, fault distance, and average shear wave velocity), two additional parameters(fault top depth and epicenter mechanism parameters) were introduced in this study. The XGBoost algorithm is utilized for characteristic parameter optimization analysis to obtain the optimal combination of four parameters. We compare the prediction results of four machine learning algorithms (random forest, XGBoost, BP neural network, and SVM) and develop a new method of significant duration prediction by constructing two fusion models (stacking and weighted averaging). The fusion model demonstrates an improvement in prediction accuracy and generalization ability of the significant duration when compared to single algorithm models based on evaluation indicators and residual values. The accuracy and rationality of the fusion model are validated through comparison with existing research.</div

    Compared with the existing prediction equation.

    No full text
    This study aims to predict the significant duration (D5-75, D5-95) of seismic motion by employing machine learning algorithms. Based on three parameters (moment magnitude, fault distance, and average shear wave velocity), two additional parameters(fault top depth and epicenter mechanism parameters) were introduced in this study. The XGBoost algorithm is utilized for characteristic parameter optimization analysis to obtain the optimal combination of four parameters. We compare the prediction results of four machine learning algorithms (random forest, XGBoost, BP neural network, and SVM) and develop a new method of significant duration prediction by constructing two fusion models (stacking and weighted averaging). The fusion model demonstrates an improvement in prediction accuracy and generalization ability of the significant duration when compared to single algorithm models based on evaluation indicators and residual values. The accuracy and rationality of the fusion model are validated through comparison with existing research.</div

    Residual graph of <i>D</i><sub>5-95</sub> predicted by random forest.

    No full text
    Residual graph of D5-95 predicted by random forest.</p

    Error distribution of <i>D</i><sub><i>5-95</i></sub> error versus <i>V</i><sub><i>S30</i></sub> (test set).

    No full text
    Error distribution of D5-95 error versus VS30 (test set).</p
    corecore