12 research outputs found

    Image_3_Xylanase VmXyl2 is involved in the pathogenicity of Valsa mali by regulating xylanase activity and inducing cell necrosis.tif

    No full text
    Xylanase plays a key role in degrading plant cell wall during pathogenic fungi infection. Here, we identified a xylanase gene, VmXyl2 from the transcriptome of Valsa mali and examined its function. VmXyl2 has highly elevated transcript levels during the infection process of V. mali, with 15.02-fold increase. Deletion mutants of the gene were generated to investigate the necessity of VmXyl2 in the development and pathogenicity of V. mali. The VmXyl2 deletion mutant considerably reduced the virulence of V. mali in apple leaves and in twigs, accompanied by 41.22% decrease in xylanase activity. In addition, we found that VmXyl2 induces plant cell necrosis regardless of its xylanase activity, whereas promoting the infection of V. mali in apple tissues. The cell death-inducing activity of VmXyl2 dependent on BRI1-associated kinase-1 (BAK1) but not Suppressor of BIR1-1 (SOBIR1). Furthermore, VmXyl2 interacts with Mp2 in vivo, a receptor-like kinase with leucine-rich repeat. The results offer valuable insights into the roles of VmXyl2 in the pathogenicity of V. mali during its infection of apple trees.</p

    Image_5_Xylanase VmXyl2 is involved in the pathogenicity of Valsa mali by regulating xylanase activity and inducing cell necrosis.tif

    No full text
    Xylanase plays a key role in degrading plant cell wall during pathogenic fungi infection. Here, we identified a xylanase gene, VmXyl2 from the transcriptome of Valsa mali and examined its function. VmXyl2 has highly elevated transcript levels during the infection process of V. mali, with 15.02-fold increase. Deletion mutants of the gene were generated to investigate the necessity of VmXyl2 in the development and pathogenicity of V. mali. The VmXyl2 deletion mutant considerably reduced the virulence of V. mali in apple leaves and in twigs, accompanied by 41.22% decrease in xylanase activity. In addition, we found that VmXyl2 induces plant cell necrosis regardless of its xylanase activity, whereas promoting the infection of V. mali in apple tissues. The cell death-inducing activity of VmXyl2 dependent on BRI1-associated kinase-1 (BAK1) but not Suppressor of BIR1-1 (SOBIR1). Furthermore, VmXyl2 interacts with Mp2 in vivo, a receptor-like kinase with leucine-rich repeat. The results offer valuable insights into the roles of VmXyl2 in the pathogenicity of V. mali during its infection of apple trees.</p

    Image_2_Xylanase VmXyl2 is involved in the pathogenicity of Valsa mali by regulating xylanase activity and inducing cell necrosis.tif

    No full text
    Xylanase plays a key role in degrading plant cell wall during pathogenic fungi infection. Here, we identified a xylanase gene, VmXyl2 from the transcriptome of Valsa mali and examined its function. VmXyl2 has highly elevated transcript levels during the infection process of V. mali, with 15.02-fold increase. Deletion mutants of the gene were generated to investigate the necessity of VmXyl2 in the development and pathogenicity of V. mali. The VmXyl2 deletion mutant considerably reduced the virulence of V. mali in apple leaves and in twigs, accompanied by 41.22% decrease in xylanase activity. In addition, we found that VmXyl2 induces plant cell necrosis regardless of its xylanase activity, whereas promoting the infection of V. mali in apple tissues. The cell death-inducing activity of VmXyl2 dependent on BRI1-associated kinase-1 (BAK1) but not Suppressor of BIR1-1 (SOBIR1). Furthermore, VmXyl2 interacts with Mp2 in vivo, a receptor-like kinase with leucine-rich repeat. The results offer valuable insights into the roles of VmXyl2 in the pathogenicity of V. mali during its infection of apple trees.</p

    Image_1_Xylanase VmXyl2 is involved in the pathogenicity of Valsa mali by regulating xylanase activity and inducing cell necrosis.tif

    No full text
    Xylanase plays a key role in degrading plant cell wall during pathogenic fungi infection. Here, we identified a xylanase gene, VmXyl2 from the transcriptome of Valsa mali and examined its function. VmXyl2 has highly elevated transcript levels during the infection process of V. mali, with 15.02-fold increase. Deletion mutants of the gene were generated to investigate the necessity of VmXyl2 in the development and pathogenicity of V. mali. The VmXyl2 deletion mutant considerably reduced the virulence of V. mali in apple leaves and in twigs, accompanied by 41.22% decrease in xylanase activity. In addition, we found that VmXyl2 induces plant cell necrosis regardless of its xylanase activity, whereas promoting the infection of V. mali in apple tissues. The cell death-inducing activity of VmXyl2 dependent on BRI1-associated kinase-1 (BAK1) but not Suppressor of BIR1-1 (SOBIR1). Furthermore, VmXyl2 interacts with Mp2 in vivo, a receptor-like kinase with leucine-rich repeat. The results offer valuable insights into the roles of VmXyl2 in the pathogenicity of V. mali during its infection of apple trees.</p

    DataSheet_1_Xylanase VmXyl2 is involved in the pathogenicity of Valsa mali by regulating xylanase activity and inducing cell necrosis.docx

    No full text
    Xylanase plays a key role in degrading plant cell wall during pathogenic fungi infection. Here, we identified a xylanase gene, VmXyl2 from the transcriptome of Valsa mali and examined its function. VmXyl2 has highly elevated transcript levels during the infection process of V. mali, with 15.02-fold increase. Deletion mutants of the gene were generated to investigate the necessity of VmXyl2 in the development and pathogenicity of V. mali. The VmXyl2 deletion mutant considerably reduced the virulence of V. mali in apple leaves and in twigs, accompanied by 41.22% decrease in xylanase activity. In addition, we found that VmXyl2 induces plant cell necrosis regardless of its xylanase activity, whereas promoting the infection of V. mali in apple tissues. The cell death-inducing activity of VmXyl2 dependent on BRI1-associated kinase-1 (BAK1) but not Suppressor of BIR1-1 (SOBIR1). Furthermore, VmXyl2 interacts with Mp2 in vivo, a receptor-like kinase with leucine-rich repeat. The results offer valuable insights into the roles of VmXyl2 in the pathogenicity of V. mali during its infection of apple trees.</p

    Image_4_Xylanase VmXyl2 is involved in the pathogenicity of Valsa mali by regulating xylanase activity and inducing cell necrosis.tif

    No full text
    Xylanase plays a key role in degrading plant cell wall during pathogenic fungi infection. Here, we identified a xylanase gene, VmXyl2 from the transcriptome of Valsa mali and examined its function. VmXyl2 has highly elevated transcript levels during the infection process of V. mali, with 15.02-fold increase. Deletion mutants of the gene were generated to investigate the necessity of VmXyl2 in the development and pathogenicity of V. mali. The VmXyl2 deletion mutant considerably reduced the virulence of V. mali in apple leaves and in twigs, accompanied by 41.22% decrease in xylanase activity. In addition, we found that VmXyl2 induces plant cell necrosis regardless of its xylanase activity, whereas promoting the infection of V. mali in apple tissues. The cell death-inducing activity of VmXyl2 dependent on BRI1-associated kinase-1 (BAK1) but not Suppressor of BIR1-1 (SOBIR1). Furthermore, VmXyl2 interacts with Mp2 in vivo, a receptor-like kinase with leucine-rich repeat. The results offer valuable insights into the roles of VmXyl2 in the pathogenicity of V. mali during its infection of apple trees.</p

    Inter- and intra-observer variability.

    No full text
    <p>(A) Inter-observer variability in the multiple contours from five observers; (B) Intra-observer variability involving a single physician at different times.</p

    Two-dimensional images (A–B) and 3D visualization (C–F) results from the CTV delineation in different situations.

    No full text
    <p>(A) The model of isotropic external expansion using the direct Euclidean distance calculation; (B) The model of anisotropic external expansion involving the use of the geodesic distance calculation to automatically cross the cerebral falx; (C) Generating the CTV without taking into consideration the cerebral falx or skull; (D) Considering the cerebral falx but not the skull; (E) Considering the skull but not the cerebral falx; (F) Considering both the skull and the cerebral falx. <i>The deep red area represents the GTV, the blue area the cerebral falx, the grey area the skull, and the pink area the CTV. GTV: gross tumor volume; CTV: clinical target volume.</i></p
    corecore