16 research outputs found

    Phosphorylation of plant virus proteins: Analysis methods and biological functions

    Get PDF
    Phosphorylation is one of the most extensively investigated post-translational modifications that orchestrate a variety of cellular signal transduction processes. The phosphorylation of virus-encoded proteins plays an important regulatory role in the infection cycle of such viruses in plants. In recent years, molecular mechanisms underlying the phosphorylation of plant viral proteins have been widely studied. Based on recent publications, our study summarizes the phosphorylation analyses of plant viral proteins and categorizes their effects on biological functions according to the viral life cycle. This review provides a theoretical basis for elucidating the molecular mechanisms of viral infection. Furthermore, it deepens our understanding of the biological functions of phosphorylation in the interactions between plants and viruses

    Ganoderma lucidum polysaccharide ameliorates cholesterol gallstone formation by modulating cholesterol and bile acid metabolism in an FXR-dependent manner

    No full text
    Abstract Background Cholesterol gallstone (CG) disease is a worldwide common disease characterized by cholesterol supersaturation in gallbladder bile. Ganoderma lucidum polysaccharide (GLP) has been shown to possess various beneficial effects against metabolic disorders. However, the role and underlying mechanism of GLP in CG formation are still unknown. This study aimed to determine the role of GLP in ameliorating lithogenic diet (LD)-induced CG formation. Methods Mice were fed either a normal chow diet, a LD, or LD supplemented with GLP. Real-time quantitative polymerase chain reaction (RT-qPCR) and western blotting were used to detect the expression of genes involved in cholesterol and bile acid (BA) metabolism. The BA concentrations in the ileum were quantified by liquid chromatography-tandem mass spectrometry (LC–MS/MS). The microbiota in cecal contents were characterized using 16S ribosomal RNA (16S rRNA) gene sequencing. Results GLP effectively alleviated CG formation induced by LD. Specifically, GLP reduced the total cholesterol (TC) levels, increased the total BA levels, and decreased the cholesterol saturation index (CSI) in gallbladder bile. The protective effect of GLP was attributed to the inhibition of farnesoid X receptor (FXR) signaling, increased hepatic BA synthesis and decreased hepatic cholesterol synthesis and secretion. GLP also altered the BA composition in the ileum, reducing FXR-agonistic BAs and increasing FXR-antagonistic BAs, which may contribute to the inhibition of intestinal FXR signaling. Additionally, GLP improved dysbiosis of the intestinal flora and reduced the serum levels of hydrogen sulfide (H2S), a bacterial metabolite that can induce hepatic FXR, thereby inhibiting hepatic FXR signaling. Moreover, the protective effect of GLP against CG formation could be reversed by both the global and gut-restricted FXR agonists. Conclusions Taken together, GLP ameliorates CG formation by regulating cholesterol and BA metabolism in an FXR-dependent manner. Our study demonstrates that GLP may be a potential strategy for the prevention against CG disease

    Additional file 1 of Ganoderma lucidum polysaccharide ameliorates cholesterol gallstone formation by modulating cholesterol and bile acid metabolism in an FXR-dependent manner

    No full text
    Additional file 1: Fig. S1. Characterization of molecular weight of GLP. Fig. S2. Characterization of monosaccharide composition of GLP. Fig. S3. Characterization of functional groups of GLP. Fig. S4. The body weight and biliary lipid composition of mice in the GLP intervention study. Fig. S5. The effect of GLP on biliary phospholipid secretion. Fig. S6. GLP altered the total BA levels in liver and serum. Fig. S7. GLP modulated gut microbiota at the order level. Fig. S8: The body weight and biliary lipid composition of mice in the FXR regulation study

    Image_2_Development of polyclonal antibodies-based serological methods for detection of the rehmannia mosaic virus in field plants.JPEG

    No full text
    Rehmannia glutinosa is a top-grade traditional Chinese medicine, and also is an important planting medicinal material for Chinese poor farmers shaking off poverty. Rehmannia mosaic virus (ReMV) causes big economic loss of R. glutinosa in planting area. However, there is no effective methods for quick, accurate, and high-throughput detection for ReMV in Chinese production area. The preserved R. glutinosa samples carrying ReMV was taken for research material. The coat protein coding sequences (CPReMV) was cloned and sequenced. The target sequence was further placed into a prokaryotic expression vector to express the N-terminal-tagged recombinant CPReMV protein (His-CPReMV). Purified His-CPReMV was used as an antigen to immunize New Zealand white rabbits, and antiserum was obtained. The titers and sensitivities of the antisera were analyzed and evaluated. Polyclonal antibodies were purified from the antiserum, and the titers and sensitivity to the target His-CPReMV protein were evaluated. The results demonstrate that the obtained polyclonal antibodies against His-CPReMV could be successfully used for rapid, accurate, and high-throughput detection of ReMV from R. glutinosa planted in the wild. Our investigation established serological-based detection methods for ReMV for the first time, and provides a foundation for future exploration of the pathogenic mechanisms of ReMV in R. glutinosa.</p

    Image_3_Development of polyclonal antibodies-based serological methods for detection of the rehmannia mosaic virus in field plants.JPEG

    No full text
    Rehmannia glutinosa is a top-grade traditional Chinese medicine, and also is an important planting medicinal material for Chinese poor farmers shaking off poverty. Rehmannia mosaic virus (ReMV) causes big economic loss of R. glutinosa in planting area. However, there is no effective methods for quick, accurate, and high-throughput detection for ReMV in Chinese production area. The preserved R. glutinosa samples carrying ReMV was taken for research material. The coat protein coding sequences (CPReMV) was cloned and sequenced. The target sequence was further placed into a prokaryotic expression vector to express the N-terminal-tagged recombinant CPReMV protein (His-CPReMV). Purified His-CPReMV was used as an antigen to immunize New Zealand white rabbits, and antiserum was obtained. The titers and sensitivities of the antisera were analyzed and evaluated. Polyclonal antibodies were purified from the antiserum, and the titers and sensitivity to the target His-CPReMV protein were evaluated. The results demonstrate that the obtained polyclonal antibodies against His-CPReMV could be successfully used for rapid, accurate, and high-throughput detection of ReMV from R. glutinosa planted in the wild. Our investigation established serological-based detection methods for ReMV for the first time, and provides a foundation for future exploration of the pathogenic mechanisms of ReMV in R. glutinosa.</p

    Image_1_Development of polyclonal antibodies-based serological methods for detection of the rehmannia mosaic virus in field plants.JPEG

    No full text
    Rehmannia glutinosa is a top-grade traditional Chinese medicine, and also is an important planting medicinal material for Chinese poor farmers shaking off poverty. Rehmannia mosaic virus (ReMV) causes big economic loss of R. glutinosa in planting area. However, there is no effective methods for quick, accurate, and high-throughput detection for ReMV in Chinese production area. The preserved R. glutinosa samples carrying ReMV was taken for research material. The coat protein coding sequences (CPReMV) was cloned and sequenced. The target sequence was further placed into a prokaryotic expression vector to express the N-terminal-tagged recombinant CPReMV protein (His-CPReMV). Purified His-CPReMV was used as an antigen to immunize New Zealand white rabbits, and antiserum was obtained. The titers and sensitivities of the antisera were analyzed and evaluated. Polyclonal antibodies were purified from the antiserum, and the titers and sensitivity to the target His-CPReMV protein were evaluated. The results demonstrate that the obtained polyclonal antibodies against His-CPReMV could be successfully used for rapid, accurate, and high-throughput detection of ReMV from R. glutinosa planted in the wild. Our investigation established serological-based detection methods for ReMV for the first time, and provides a foundation for future exploration of the pathogenic mechanisms of ReMV in R. glutinosa.</p

    Image_4_Development of polyclonal antibodies-based serological methods for detection of the rehmannia mosaic virus in field plants.JPEG

    No full text
    Rehmannia glutinosa is a top-grade traditional Chinese medicine, and also is an important planting medicinal material for Chinese poor farmers shaking off poverty. Rehmannia mosaic virus (ReMV) causes big economic loss of R. glutinosa in planting area. However, there is no effective methods for quick, accurate, and high-throughput detection for ReMV in Chinese production area. The preserved R. glutinosa samples carrying ReMV was taken for research material. The coat protein coding sequences (CPReMV) was cloned and sequenced. The target sequence was further placed into a prokaryotic expression vector to express the N-terminal-tagged recombinant CPReMV protein (His-CPReMV). Purified His-CPReMV was used as an antigen to immunize New Zealand white rabbits, and antiserum was obtained. The titers and sensitivities of the antisera were analyzed and evaluated. Polyclonal antibodies were purified from the antiserum, and the titers and sensitivity to the target His-CPReMV protein were evaluated. The results demonstrate that the obtained polyclonal antibodies against His-CPReMV could be successfully used for rapid, accurate, and high-throughput detection of ReMV from R. glutinosa planted in the wild. Our investigation established serological-based detection methods for ReMV for the first time, and provides a foundation for future exploration of the pathogenic mechanisms of ReMV in R. glutinosa.</p

    Two superconductor-insulator phase transitions in the spinel oxide Li<sub>1±x</sub>Ti<sub>2</sub> O<sub>4-δ</sub> induced by ionic liquid gating

    No full text
    The associations between emergent physical phenomena (e.g., superconductivity) and orbital, charge, and spin degrees of freedom of 3d electrons are intriguing in transition metal compounds. Here, we successfully manipulate the superconductivity of spinel oxide Li1±xTi2O4-δ (LTO) by ionic liquid gating. A dome-shaped superconducting phase diagram is established, where two insulating phases are disclosed both in heavily electron-doping and hole-doping regions. The superconductor-insulator transition (SIT) in the hole-doping region can be attributed to the loss of Ti valence electrons. In the electron-doping region, LTO exhibits an unexpected SIT instead of a metallic behavior despite an increase in carrier density. Furthermore, a thermal hysteresis is observed in the normal state resistance curve, suggesting a first-order phase transition. We speculate that the SIT and the thermal hysteresis stem from the enhanced 3d electron correlations and the formation of orbital ordering by comparing the transport and structural results of LTO with the other spinel oxide superconductor MgTi2O4 (MTO), as well as analyzing the electronic structure by first-principles calculations. Further comprehension of the detailed interplay between superconductivity and orbital ordering would contribute to the revealing of unconventional superconducting pairing mechanism
    corecore