37 research outputs found

    Investigation of Chemical Cleaning of Supercritical Superheater Oxide Scale

    No full text
    Recent years, as the development of thermal power plant, superheater oxide film caused by over temperature and tube explosion and the turbine blade erosion problem more and more serious. The research and development of chemical cleaning technology of superheater oxide film is one of the most effective ways to solve this problem. The chemical cleaning of superheater is rather difficult than that of boiler, for mainly the reason as below. First, the scale of superheater tube, differences in microstructure, scales dense and need to use higher cleaning medium concentration and longer cleaning time. Second, the materials of superheater complex, involves ferritic steel and austenitic stainless steel such as 12Cr1MoV, T22, T91, TP347 and SUS304. For controlling chemical cleaning process, the acid corrosion sample is employed to slow inhibitor on different metal and alloys. Also, the traditional weight-loss method to evaluate the corrosion rate of materials in chemical cleaning process is discussed to monitor the corrosion process

    The in-plane anisotropic magnetic damping of ultrathin epitaxial Co2FeAl film

    No full text
    The in-plane orientation-dependent effective damping of ultrathin Co2FeAl film epitaxially grown on GaAs(001) substrate by molecular beam epitaxy (MBE) has been investigated by employing the time-resolved magneto-optical Kerr effect (TR-MOKE) measurements. It is found that the interface-induced uniaxial anisotropy is favorable for precession response and the anisotropy of precession frequency is mainly determined by this uniaxial anisotropy, while the magnetic relaxation time and damping factor exhibit the fourfold anisotropy at high-field regime. The field-independent anisotropic damping factor obtained at high fields indicates that the effective damping shows an intrinsic fourfold anisotropy for the epitaxial Co2FeAl thin films

    The box plot figures of ten traits in four environments.

    No full text
    <p>The box plot figures of ten traits in four environments.</p

    Graphic genotypes of the 54 BILs.

    No full text
    <p>Graphic genotypes of the 54 BILs.</p
    corecore