20 research outputs found

    Cloud Particles Evolution Algorithm

    Get PDF
    Many evolutionary algorithms have been paid attention to by the researchers and have been applied to solve optimization problems. This paper presents a new optimization method called cloud particles evolution algorithm (CPEA) to solve optimization problems based on cloud formation process and phase transformation of natural substance. The cloud is assumed to have three states in the proposed algorithm. Gaseous state represents the global exploration. Liquid state represents the intermediate process from the global exploration to the local exploitation. Solid state represents the local exploitation. The cloud is composed of descript and independent particles in this algorithm. The cloud particles use phase transformation of three states to realize the global exploration and the local exploitation in the optimization process. Moreover, the cloud particles not only realize the survival of the fittest through competition mechanism but also ensure the diversity of the cloud particles by reciprocity mechanism. The effectiveness of the algorithm is validated upon different benchmark problems. The proposed algorithm is compared with a number of other well-known optimization algorithms, and the experimental results show that cloud particles evolution algorithm has a higher efficiency than some other algorithms

    An Improved Teaching-Learning-Based Optimization with Differential Learning and Its Application

    No full text
    The teaching-learning-based optimization (TLBO) algorithm is a population-based optimization algorithm which is based on the effect of the influence of a teacher on the output of learners in a class. A variant of teaching-learning-based optimization (TLBO) algorithm with differential learning (DLTLBO) is proposed in the paper. In this method, DLTLBO utilizes a learning strategy based on neighborhood search of teacher phase in the standard TLBO to generate a new mutation vector, while utilizing a differential learning to generate another new mutation vector. Then DLTLBO employs the crossover operation to generate new solutions so as to increase the diversity of the population. By the integration of the local search and the global search, DLTLBO achieves a tradeoff between exploration and exploitation. To demonstrate the effectiveness of our approaches, 24 benchmark functions are used for simulating and testing. Moreover, DLTLBO is used for parameter estimation of digital IIR filter and experimental results show that DLTLBO is superior or comparable to other given algorithms for the employed examples

    A Graph-Based Method for IFC Data Merging

    No full text
    Collaborative work in the construction industry has always been one of the problems solved by BIM (Building Information Modeling) technology. The integration of IFC (Industry Foundation Classes) data as a general building information standard is one of the indispensable functions in collaborative work. The most practical approach of merging IFC data depends on GUID (Global Universal Identifier) comparison at present. However, GUID is not stable in current applications and often changes when exported. The intact representation of relationships between IFC entities is an essential prerequisite for proper association of IFC entities in IFC mergence. This paper proposes a graph-based method for IFC data merging. The IFC data are represented as a graphical data structure, which completely preserves the relationship between IFC entities. IFC mergence is accomplished by associating other data with an isomorphic graph that is obtained by mining the IFC graph. The feasibility of the method is proven by a program, and the method can ignore the impacts of GUID and other factors

    An Automatic Extraction Method of Rebar Processing Information Based on Digital Image

    No full text
    Reinforced steel is one of the most important building materials in civil engineering and improving the intelligence of steel reinforcement engineering can greatly promote the intelligent development of the construction industry. This research addressed the problems of the slow speed and poor accuracy of manually extracting rebar processing information, which leads to a low degree of rebar processing intelligence. Firstly, based on digital image processing technology, image preprocessing methods such as binarization and grayscale were used to eliminate redundant information in a detail drawing of a rebar. An image segmentation method based on pixel statistics was proposed to store the geometric and non-geometric information of the detail drawing of the rebar separately. Next, the bending angle was extracted by line thinning and corner detection, and the bending direction of the steel bar was determined based on the mathematical characteristics of the vector product. Finally, the non-geometric information was extracted by combining the morphological algorithm and the Optical Character Recognition (OCR) engine. According to the characteristics of the information sequence, an information mapping method was proposed to realize the integration of geometric and non-geometric information. The applicability and accuracy of this method for extracting the steel bar’s information were tested by experiments, and it was shown that the method also provides a theoretical basis for realizing the intelligentization and informatization of steel bar processing

    Multiobjective Cloud Particle Optimization Algorithm Based on Decomposition

    No full text
    The multiobjective evolutionary algorithm based on decomposition (MOEA/D) has received attention from researchers in recent years. This paper presents a new multiobjective algorithm based on decomposition and the cloud model called multiobjective decomposition evolutionary algorithm based on Cloud Particle Differential Evolution (MOEA/D-CPDE). In the proposed method, the best solution found so far acts as a seed in each generation and evolves two individuals by cloud generator. A new individual is produced by updating the current individual with the position vector difference of these two individuals. The performance of the proposed algorithm is carried on 16 well-known multi-objective problems. The experimental results indicate that MOEA/D-CPDE is competitive

    From Replay to Regeneration: Recovery of UDP Flood Network Attack Scenario Based on SDN

    No full text
    In recent years, various network attacks have emerged. These attacks are often recorded in the form of Pcap data, which contains many attack details and characteristics that cannot be analyzed through traditional methods alone. Therefore, restoring the network attack scenario through scene reconstruction to achieve data regeneration has become an important entry point for detecting and defending against network attacks. However, current network attack scenarios mainly reproduce the attacker’s attack steps by building a sequence collection of attack scenarios, constructing an attack behavior diagram, or simply replaying the captured network traffic. These methods still have shortcomings in terms of traffic regeneration. To address this limitation, this paper proposes an SDN-based network attack scenario recovery method. By parsing Pcap data and utilizing network topology reconstruction, probability, and packet sequence models, network traffic data can be regenerated. The experimental results show that the proposed method is closer to the real network, with a higher similarity between the reconstructed and actual attack scenarios. Additionally, this method allows for adjusting the intensity of the network attack and the generated topology nodes, which helps network defenders better understand the attackers’ posture and analyze and formulate corresponding security strategies
    corecore