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Many evolutionary algorithms have been paid attention to by the researchers and have been applied to solve optimization problems.
This paper presents a new optimization method called cloud particles evolution algorithm (CPEA) to solve optimization problems
based on cloud formation process and phase transformation of natural substance. The cloud is assumed to have three states in
the proposed algorithm. Gaseous state represents the global exploration. Liquid state represents the intermediate process from
the global exploration to the local exploitation. Solid state represents the local exploitation. The cloud is composed of descript and
independent particles in this algorithm.The cloud particles use phase transformation of three states to realize the global exploration
and the local exploitation in the optimization process. Moreover, the cloud particles not only realize the survival of the fittest
through competition mechanism but also ensure the diversity of the cloud particles by reciprocity mechanism.The effectiveness of
the algorithm is validated upon different benchmark problems. The proposed algorithm is compared with a number of other well-
known optimization algorithms, and the experimental results show that cloud particles evolution algorithm has a higher efficiency
than some other algorithms.

1. Introduction

Many real-world problems which are classified as global opti-
mization problems are very complex and are quite difficult to
solve. Various optimization algorithms are developed to solve
these problems. Most of these algorithms learn and imitate
a variety of intelligent behavior in nature. These algorithms
exploit a set of potential solutions and detect the optimal
solution through cooperation and competition among the
individuals of the population [1]. For example, Genetic algo-
rithm [2] proposed by Professor Holland is a computational
model of biological evolutionwhich imitates natural selection
and genetic mechanism. Ant colony algorithm [3] is a heuris-
tic bionic optimization algorithmwhich imitates the foraging
behavior of the ant colony. In the ant colony algorithm,
an individual is called an artificial ant. The artificial ants
search probabilistically in the solution space to create can-
didate solutions. The evaluating and the updating of these
candidate solutions are based on the pheromone associated
with each one of them. The candidate solution with the
maximum amount of pheromone is considered to be the
optimal solution of the problem. Particle swarm optimization
(PSO) [4] is a bionic intelligent computing method proposed

by Kennedy and Eberhart which imitates the flying and the
foraging behavior of birds. In PSO, the optimal solution is
called a leader. The leader guides each particle to search.
Besides, the particles cooperate with each other to realize
exploration. These behaviors are directed by a combination
of swarm’s previous best (gBest) and their own previous best
(pBest) [5]. The artificial bee colony algorithm (ABC) [6, 7]
is a nonderivative optimization method based on self-organ-
izational models of bee and swarm intelligence. In ABC, bees
are divided into three groups which are called “employed”
bees, “onlooker” bees, and “scouts” bees. “Onlookers” bees
look for food sources. Food source is the search goal of bees.
“Employed” bees work on food source. In addition, “scouts”
bees search for the new food source near the hive. Artificial
immune system (AIS) [8] is an adaptive system inspired by
the immunologywhich imitates human immunological func-
tions, principles, and models to solve complex problems. In
AIS, the external organisms are called antigen and the inter-
nal organisms are called antibodies. Immune clonal oper-
ation provides multistrategy conditions for recombination
and mutation [9]. The clonal selection selects the excellent
antibodies from the subpopulation generated by clonal pro-
liferation.
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This paper which is inspired by the natural phenomena
of cloud formation presents a novel optimization algorithm
to solve optimization problems called cloud particles evolu-
tion algorithm (CPEA). The proposed algorithm uses phase
transformation mechanism to imitate the formation and
diversification of the cloud to solve the optimization prob-
lems. It is well known that the species evolution is influenced
by individual fitness, living environment, competition, and
cooperation between the individuals. Therefore, the algo-
rithm introduces competition and reciprocal mechanism in
the evolution process so as to strengthen the viability of the
cloud particles.The performance of the cloud particles evolu-
tion algorithm (CPEA) is tested on the classical optimization
problems. The results are compared with other algorithms
in terms of best function value and the number of function
evaluations.

The remainder of this paper is organized as follows. In
Section 2, the proposed CPEA and the concepts are intro-
duced in detail. In Section 3, the performance of the proposed
algorithm is validated by different optimization problems.
The conclusion and future research are drawn in Section 4.

2. Cloud Particles Evolution Algorithm

2.1. Cloud Formation. The idea of the proposed CPEA is
inspired from cloud formation. The state of the cloud parti-
cles’ changing process [10–12] is shown in Figure 1.

After the wet air rises, it will go through a set of changes
because of some certain reasons temperature and pressure.
Then, the water vapor is formed.Water vapor plays an impor-
tant role in this process. When the water vapor is saturated,
it will adsorb on the cloud condensation nuclei (CNN) and
the initial cloud particles are formed. Cloud particles are
condensed and sublimated continuously by absorbing water
vapor around the cloud. In the process of the condensation,
the cloud particles are getting closer and colliding. Then the
larger cloud particles are formed. Ice phase is generated when
the temperature is below 0∘C at this time. The emergence of
ice crystals damages the stable status of cloud phase structure.
Ice crystals grow up quickly to be the snow crystals because
of the condensation of the water vapor. On the one hand,
water vapor transfers to ice crystals and ice crystals begin
to grow up as supercooled water droplets evaporate. On the
other hand, the supercooledwater dropletswill be frozen after
the colliding to make the snow particles grow bigger. If the
supercooledwater vapor which has been collided is toomany,
the snow crystals will be transferred to be solid substances.
Then, the solid substances such as snow and hail will be
dropped. If the solid substances descent in the area which has
a higher temperature over 0∘C, they will melt into raindrop.
Thewater in our planet will be irradiated by the sunshine, and
it will become the water vapor again in the air. The cloud is
formed and changed like this.

2.2. Phase and Phase Transformation. There are various kinds
of substance in nature. Substances commonly exist in three
states: solid, liquid, and gaseous. Figure 2 is a simple diagram
to show howwater transforms among the three states. Evapo-
ration, condensation, andmelting are the threeways for water
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Figure 1: Cloud particles transformation process.
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Figure 2: Three phases of water.

transforming. In order to describe the different forms of the
substance, the phase can be used as a symbol for states of sub-
stances. In thermodynamics, phase is defined as some parts
which have the same quality [13]. A phase transformation is
the transition which is from one phase to another in thermo-
dynamics.

Phase transformation is relevant to Gibbs free energy.
In thermodynamics, the Gibbs free energy [14] is a ther-
modynamic potential that measures the “useful” or process-
initiating work obtainable from a thermodynamic system at
a constant temperature and pressure.

2.3. Population Evolution Mechanism. Darwin pointed out
that mutation and natural selection are the two important
factors for the evolution, which explained many natural phe-
nomena successfully [15]. Nowak from Harvard University
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Figure 3: Five mechanisms of cooperation evolution [16].

ranked the cooperation as the third important factor of the
species evolution. Evolution is a unity of the cooperation
and the opposition [16]. Every gene, cell, and organism of
the individual should strengthen its own evolution process at
the expense of beating its rivals. Therefore, individuals often
conflict with each other because of limited resources [17].
However, the complex life organizational structure in differ-
ent levels is produced in the process of evolution, which indi-
cates that the cooperation exists in the evolution. Therefore,
Nowak summarizes five mechanisms for the cooperation
evolution such as kin selection, direct reciprocity, indirect
reciprocity, network reciprocity, and group selection (shown
in Figure 3).

Haldane believes that the altruism exists in the evolution
[18]. According to the study of the social insect, Hamilton
[19] used mathematic model for quantitative description and
defined the Hamilton rules. The rule states natural selection
favors cooperation if the donor and the recipient have kin
relationships. Direct reciprocity requires several repeated
encounters between two individuals which can offer help
with each other. The direct reciprocity theory framework is
repeated Prisoner’sDilemma.The classical game strategy is tit
for tat, TFT [20]. The interactions among individuals in
nature are often asymmetrical and fleeting. Therefore, indi-
rect reciprocity is a more prevalent reciprocity form. Indirect
reciprocity refers to establishing a good reputation by helping
others, which will be rewarded by others later. In Indirect
reciprocity, one individual acts as donor while the other acts
as recipient. Indirect reciprocity will favor the cooperation
evolution, if 𝑞; the probability of one individual’s reputation
exceeds the cost-to-benefit ratio of the altruistic act, namely,
𝑞 > 𝑐/𝑏 [21]. Network reciprocity is a new form of reciprocity.
Cooperators can form network clusters in order to help each
other. The cooperation mechanism of this spatial reciprocity
is called network reciprocity. Group selection is a minimalist
stochastic model [22]. The population is divided into several
groups. Cooperators help each other in their own groups
while defectors do not help.The pure cooperator groups grow
faster than the pure defector groups while the defector groups
reproduce faster than the cooperator groups in any mixed
group. Therefore, defectors are often selected in the lower
level (within groups) while cooperators are often selected in
the higher (between groups) level.
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Figure 4: Cloud gaseous phase.

2.4. Description of the Proposed Algorithm. The main goal of
the cloud particles evolution system is to realize the evolution
of the cloud particles through phase transformation. In cloud
particles evolution model, cloud particles have three phases:
cloud gaseous phase, cloud liquid phase, and cloud solid
phase. Cloud gaseous phase indicates gaseous cloud particles
which are distributed in the entire search space. Cloud liquid
phase refers to the rain in nature. Cloud solid phase represents
hailstones in nature.

The proposed algorithm which is similar to other meta-
heuristic algorithms begins with an initial population called
the cloud particles. At the beginning, let the initial state be
cloud gaseous phase which is composed of many cloud parti-
cles (shown in Figure 4). The best individual (best cloud par-
ticle) is chosen as a seed or nucleus. Then, the cloud particles
are going to have a condensational growth or collisions and
coalescence growth (shown in Figure 5). If the population
evolves successfully, the cloud particles are going to change
from cloud gaseous state to liquid state by condensation.
Cloud changes from gaseous phase to cloud liquid phase.This
process is called phase transformation. When cloud particles
are in liquid state, cloud particles transform from global
exploration to local exploitation gradually. In this process,
according to the idea of the indirect reciprocity mentioned
before, if 𝑞 > 𝑐/𝑏 the algorithm will favor the cooperation
evolution or it will change from the liquid phase to solid phase
by phase transformation. When cloud particles are in solid
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state (shown in Figure 6), the cloud particles condense into
ice crystals at the beginning, and then ice crystals curdle into
hailstones. The hailstone is the best solution.

It can be seen from the biological evolutionary behavior
that the individuals compete to survive. However, competi-
tive ability is always asymmetry because the different individ-
ual has different fitness. Usually, it is easier for disadvantaged
individuals to compete with the individuals in the same sit-
uation while they seldom compete with the advantaged indi-
viduals [23]. Therefore, competition and cooperation which
are two different survival strategies for living organisms are
formed in order to adapt to the environment. In the CPEA
model, according to the natural phenomena that the pop-
ulation develops cooperatively when they evolve, these two
strategies can be shown as follows.The populations carry out
the competitive evolution in cloud gaseous phase. In cloud
liquid phase, the populations employ competitivemechanism
for improving local exploitation ability and employ reciprocal
mechanism to ensure the diversity of the population. Cloud
solid phase indicates the algorithm has found the optimal
solution area; therefore the algorithm realizes fast conver-
gence by competitive evolution. The optimization process of
CPEA model is shown in Figure 7.

In CPEA, the initialization, phase transformation driving
force, condensation operation, reciprocity operation, and
solidification operation are described as follows.

Liquid
phase

Solid
phase

Optimization
solution

Global
exploration

Conversion
state Local

exploitation

Gaseous
phase

Reciprocal
evolution

Global
Local

Competitive
evolution

Successful
evolution

Successful
evolution 

Successful evolution

Phase
transition

Phase transition

Figure 7: Optimization process of CPEA model.

2.4.1. Initialization. When the metaheuristic methods are
used to solve the optimization problem, one population is
formed at first. Then, the variables which are involved in the
optimization problem can be represented as an array. In this
algorithm, one single solution is called one “cloud particle.”
The cloud particles have three parameters [24]. They are
Expectation (𝐸

𝑥
), Entropy (𝐸

𝑛
), and Hyperentropy (𝐻

𝑒
). 𝐸
𝑥

is the expectation values of the distribution for all cloud par-
ticles in the domain. 𝐸

𝑛
is the range of domain which can be

accepted by linguistic values (qualitative concept). In another
word, 𝐸

𝑛
is ambiguity.𝐻

𝑒
is the dispersion degree of entropy

(𝐸
𝑛
). That is to say,𝐻

𝑒
is the entropy of entropy. In addition,

𝐻
𝑒
can be also defined as the uncertaintymeasure for entropy.

In 𝑚 dimensional optimization problems, a cloud particle is
an array of 1 × 𝑚. This array is defined as follows:

Cloud particle = [𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑚
] . (1)

To start the optimization algorithm, amatrix of cloud par-
ticles which size is𝑁×𝑚 is generated by cloud generator (i.e.,
population of cloud particles). Cloud particles generation is
described as follows: Φ(𝜇, 𝛿) is the normal random variable
which has an expectation 𝜇 and a variance 𝛿;𝑁 is the number
of cloud particle; 𝑋 is the cloud particle generated by cloud
generator. Consider

𝑆 = {𝑠
𝑖
| Φ (𝐸

𝑛
, 𝐻
𝑒
) , 𝑖 = 1 ⋅ ⋅ ⋅ 𝑁} ,

𝑋 = {𝑥
𝑖
| Φ (𝐸

𝑥
, 𝑠
𝑖
) , 𝑠
𝑖
∈ 𝑆, 𝑖 = 1 ⋅ ⋅ ⋅ 𝑁} .

(2)

The matrix 𝑋 generated by cloud generator is given as
(rows and column are the number of population and the
number of design variables, resp.)
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Each of the decision variable values (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑚
) can

represent real values for continuous or discrete problems.The
fitness of a cloud particle is calculated by the evaluation of
objective function (𝐹) given as

𝐹
𝑖
= 𝑓 (𝑥

1

1

, 𝑥
1

2

, . . . , 𝑥
1

𝑖

) 𝑖 = 1, 2, 3, . . . , 𝑚. (4)

In the function above,𝑁 and 𝑚 are the number of cloud
particles and the number of decision variables.The cloud par-
ticles which number is𝑁 are generated by the cloud genera-
tor.The cloud particle which has the optimal value is selected
as the nucleus. The total population consists of𝑁

𝑝
subpopu-

lations. Each subpopulation of cloud particles selects a cloud
particle as the nucleus. Therefore, there are𝑁

𝑝
nuclei.

2.4.2. Phase Transformation Driving Force. The phase trans-
formation driving force (PT) can reflect the evolution extent
of the population. In the proposed algorithm, phase trans-
formation driving force is the factor of deciding phase trans-
form. During the evolution, the energy possessed by a cloud
particle is called its evolution potential. Phase transformation
driving force is the evolution potential energy difference
between the cloud particles of new generation and the cloud
particles of old generation.The phase transformation driving
force is defined as follows:

EP
𝑖
= 𝑏𝑒𝑠𝑡𝑖𝑛𝑑𝑖V𝑖𝑑𝑢𝑎𝑙

𝑖
𝑖 = 1, 2, 3, . . . , 𝑔𝑒𝑛 (5)

PT = √
(EPgenindex−1 − EP)

2

+ (EPgenindex − EP)
2

2

EP =
EPgenindex−1 + EPgenindex

2
.

(6)

The cloud evolution system realizes phase transformation
if PT ≤ 𝛿. EP represents the evolution potential of cloud
particles. gen represents the maximum generation of the
algorithm. bestindividual represents the best solution of the
current generation. genindex is the number of the current
evolution.

2.4.3. Condensation Operation. The population realizes the
global exploration in cloud gaseous phase by condensation
operation. The population takes the best individual as the
nucleus in the process of the condensation operation. In
the cloud gaseous phase, the condensation growth space of
cloud particle is calculated by the following equations. cd is
the condensation factor. generation is the number of current
evolution. 𝐸

𝑛𝑖
is the entropy of the 𝑖th subpopulation. 𝐻

𝑒𝑖
is

hyperentropy of the 𝑖th subpopulation. Consider

𝐸
𝑛𝑖
=

𝑛𝑢𝑐𝑙𝑒𝑢𝑠𝑖


√𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛
, (7)

𝐻
𝑒𝑖
=
𝐸
𝑛𝑖

cd
. (8)

2.4.4. Reciprocity Operation. If the evolution potential of
cloud particles between the two generations is less than a

given threshold in cloud liquid phase, the algorithm will
determine whether to employ the reciprocal evolution. If the
reciprocal evolution condition is met, the reciprocal evolu-
tion is employed. Otherwise the algorithm carries out phase
transformation. In reciprocity operation, the probability of
one individual’s reputation is calculated by 𝑢. 𝑢 ∈ [0, 1] is
a uniformly random number. The cost-to-benefit ratio of the
altruistic act is (1−0.618) ≈ 0.38 and 0.618 is the golden ratio.
𝑁
𝑝
represents the number of the subpopulations. 𝑛𝑢𝑐𝑙𝑒𝑢𝑠

𝑖
is

the nucleus of the 𝑖th subpopulation. Consider

𝑛𝑢𝑐𝑙𝑒𝑢𝑠
𝑁𝑝
=
∑
𝑁𝑝−1

𝑖=1

𝑛𝑢𝑐𝑙𝑒𝑢𝑠
𝑖

𝑁
𝑝
− 1

. (9)

Generally, the optima value will act as the nucleus. How-
ever, the nucleus of the last subpopulation is the mean of the
optima values coming from the rest of the subpopulations in
reciprocity operation. The purpose of the reciprocity mech-
anism is to ensure the diversity of the cloud particles. For
example, circle represents the location of the global optimum
and pentagram represents the location of the local optima in
Figure 8. Figure 8(a) displays the position of nucleus before
reciprocity operator. Figure 8(b) shows the individuals gen-
erated by cloud generator based on Figure 8(a). Figure 8(c)
shows the position of nucleus with reciprocity operator based
on Figure 8(a). Figure 8(d) shows the individuals generated
by cloud generator based on Figure 8(c). By comparing
Figure 8(b) with Figure 8(d), it can be seen that the distri-
bution of the individuals in Figure 8(d) is more widely than
those in Figure 8(b).

2.4.5. Solidification Operation. The algorithm realizes con-
vergence operation in cloud solid phase by solidification
operation. sf is the solidification factor:

𝐸
𝑛𝑖𝑗
=

{{

{{

{


𝑛𝑢𝑐𝑙𝑒𝑢𝑠

𝑖𝑗



sf
, if 𝑛𝑢𝑐𝑙𝑒𝑢𝑠𝑖𝑗


> 10
−2

,


𝑛𝑢𝑐𝑙𝑒𝑢𝑠

𝑖𝑗


, otherwise,

(10)

𝐻
𝑒𝑖𝑗
=

𝐸
𝑛𝑖𝑗

100
, (11)

where 𝑖 = 1, 2, . . . , 𝑁
𝑝
and 𝑗 = 1, 2, . . . , 𝐷.𝑁

𝑝
represents the

number of the subpopulations. 𝐷 represents the number of
dimensions.

The pseudocode of CPEA is illustrated in Algorithms 1,
2, 3, and 4. 𝑁

𝑝
represents the number of the subpopulation.

Childnum represents the number of individuals of every
subpopulation. The search space is [−𝑟, 𝑟].

3. Experiments and Discussions

In this section, the performance of the proposed CPEA is
tested with a comprehensive set of benchmark functions
which include 40 different global optimization problems
and CEC2013 benchmark problems. The definition of the
benchmark functions and their global optimum(s) are listed
in the Appendix. The benchmark functions are chosen from
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Figure 8: Reciprocity operator.

(1) if State == 0 then
(2) Calculate the evolution potential of cloud particles according to (5)
(3) Calculate the phase transformation driving force according to (6)
(4) if PT ≤ 𝛿 then
(5) % Phase Transformation from gaseous to liquid
(6) 𝑁

𝑝

= ⌈𝑁
𝑝

/2⌉

(7) Childnum = Childnum × 2
(8) Select the nucleus of each sub-population
(9) 𝛿 = 𝛿/10

(10) State = 1
(11) else
(12) % Condensation Operation
(13) for 𝑖 = 1:𝑁

𝑃

(14) Update 𝐸
𝑛𝑖
for each sub-population according to (7)

(15) Update𝐻
𝑒𝑖
for each sub-population according to (8)

(16) endfor
(17) endif
(18) endif

State = 0: Cloud Gaseous Phase, State = 1: Cloud Liquid Phase, State = 2: Cloud Solid Phase

Algorithm 1: Evolutionary algorithm of the cloud gaseous state.
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(1) if State == 1 then
(2) Calculate the evolution potential of cloud particles according to (5)
(3) Calculate the phase transformation driving force according to (6)
(4) for 𝑖 = 1:𝑁

𝑝

(5) for 𝑗 = 1:𝐷
(6) if |𝑛𝑢𝑐𝑙𝑒𝑢𝑠

𝑖𝑗

| > 1

(7) 𝐸
𝑛𝑖𝑗
= |𝑛𝑢𝑐𝑙𝑒𝑢𝑠

𝑖𝑗

|/20

(8) elseif |𝑛𝑢𝑐𝑙𝑒𝑢𝑠
𝑖𝑗

| > 0.1

(9) 𝐸
𝑛𝑖𝑗
= |𝑛𝑢𝑐𝑙𝑒𝑢𝑠

𝑖𝑗

|/3

(10) else
(11) 𝐸

𝑛𝑖𝑗
= |𝑛𝑢𝑐𝑙𝑒𝑢𝑠

𝑖𝑗

|

(12) endif
(13) endfor
(14) endfor
(15) for 𝑖 = 1:𝑁

𝑝

(16) Update𝐻
𝑒𝑖
for each sub-population according to (8)

(17) endfor
(18) if PT ≤ 𝛿 then
(19) if rand > 𝑐/𝑏 then
(20) Reciprocity Operation according to (9)% Reciprocity Operation
(21) else
(22) % Phase Transformation from liquid to solid
(23) 𝑁

𝑝

= ⌈𝑁
𝑝

/2⌉

(24) Childnum = Childnum × 2
(25) Select the nucleus of each sub-population
(26) 𝛿 = 𝛿/100

(27) State = 2
(28) endif
(29) endif
(30) endif

Algorithm 2: Evolutionary algorithm of the cloud liquid state.

(1) if State == 2 then
(2) Calculate the evolution potential of cloud particles according to (5)
(3) Calculate the phase transformation driving force according to (6)
(4) % Solidification Operation
(5) if PT ≤ 𝛿 then
(6) sf = sf × 2
(7) 𝛿 = 𝛿/10

(8) endif
(9) for 𝑖 = 1:𝑁

𝑃

(10) for 𝑗 = 1:𝐷
(11) Update 𝐸

𝑛𝑖𝑗
according to (10)

(12) Update𝐻
𝑒𝑖𝑗
according to (11)

(13) endfor
(14) endfor
(15) endif

Algorithm 3: Evolutionary algorithm of the cloud solid state.

Ali et al. [25] and Rahnamayan et al. [26].They are unimodal
functions, multimodal functions, and rotate functions. All
the algorithms are implemented on the same machine with
a T2450 2.4GHz CPU, 1.5 GB memory, and windows XP
operating system with Matlab R2009b.

3.1. Parameter Study. In this section, the setting basis for
initial values of some parameters involved in the cloud parti-
cles evolution algorithm model is described. Firstly, we hope
that all the cloud particles which are generated by the cloud
generator can fall into the search space as much as possible.
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(1) Initialize𝐷 (number of dimensions),𝑁
𝑝

= 5; Childnum = 30; 𝐸
𝑛

=2/3r;𝐻
𝑒

= 𝐸
𝑛

/1000;
(2) for 𝑖 = 1:𝑁

𝑝

(3) for 𝑗 = 1:𝐷
(4) if 𝑗 is even
(5) 𝐸

𝑥𝑖𝑗
= 𝑟/2

(6) else
(7) 𝐸

𝑥𝑖𝑗
= −𝑟/2

(8) end if
(9) end for
(10) end for
(11) Use cloud generator to produce cloud particles
(12) Evaluate Subpopulation
(13) Selectnucleus
(14) while requirements are not satisfied do
(15) Use cloud generator to produce cloud particles
(16) Evaluate Subpopulation
(17) Selectnucleus
(18) Evolutionary algorithm of the cloud gaseous state
(19) Evolutionary algorithm of the cloud liquid state
(20) Evolutionary algorithm of the cloud solid state
(21) end while

Algorithm 4: Cloud particles evolution algorithm: CPEA.
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Figure 9: Valid cloud particles of different 𝐸
𝑛

.

Secondly, the diversity of the population can be ensured effec-
tively if the cloud particles are distributed in the search space
uniformly. Therefore, some experiments are designed to
analyze the feasibility of the selected scheme in order to
illustrate the rationality of the selected parameters.

3.1.1. Definition of 𝐸
𝑛
. Let the search range 𝑆 be [−𝑟, 𝑟] and 𝑟

is the search radius. Set 𝑟 = 2, 𝐸
𝑥1
= −2/3, 𝐸

𝑥2
= 2/3, 𝐻

𝑒
=

0.001𝐸
𝑛
. Five hundred cloud particles are generated in every

experiment. The experiment is independently simulated 30
times. The cloud particle is called a valid cloud particle if it
falls into the search space. Figure 9 is a graphwhich shows the
number of the valid cloud particles generated with different
𝐸
𝑛
, and Figure 10 is a graph which shows the distribution of

valid cloud particles generated with different 𝐸
𝑛
.

It can be seen from Figure 9 that the number of the
valid cloud particles reduces as the 𝐸

𝑛
increases. The average

number of valid cloud particles is basically the same when
𝐸
𝑛
is (1/3)𝑟, (1/2)𝑟, and (2/3)𝑟, respectively. However, the

number of valid cloud particles is relatively fewer when 𝐸
𝑛
is

(3/4)𝑟, (4/5)𝑟, and 𝑟. It can be seen from Figure 10 that all the
cloud particles fall into the research space when 𝐸

𝑛
is (1/3)𝑟,

(1/2)𝑟, and (2/3)𝑟, respectively. However, the cloud particles
concentrate in a certain area of the search space when 𝐸

𝑛
is

(1/3)𝑟 or (1/2)𝑟. By contrast, the cloud particles are widely
distributed throughout all the search space [−2, 2] when 𝐸

𝑛

is (2/3)𝑟. Therefore, set 𝐸
𝑛
= (2/3)𝑟. The dashed rectangle in

Figure 10 represents the decision variables space.

3.1.2. Definition of 𝐻
𝑒
. Ackley Function (multimode) and

Sphere Function (unimode) are selected to calculate the num-
ber of fitness evaluations (NFES) of the algorithm when the
solution reaches𝑓 stopwith different𝐻

𝑒
. Let the search space
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Figure 11: NFES of CPEA in different𝐻
𝑒

.

be [−32, 32] (Ackley) and [−100, 100] (Sphere), 𝑓 stop =

10
−3. 𝐻
𝑒1
= 𝐸
𝑛
, 𝐻
𝑒2
= 0.1𝐸

𝑛
, 𝐻
𝑒3
= 0.01𝐸

𝑛
, 𝐻
𝑒4
= 0.001𝐸

𝑛
,

𝐻
𝑒5
= 0.0001𝐸

𝑛
, 𝐻
𝑒6
= 0.00001𝐸

𝑛
, and 𝐻

𝑒7
= 0.000001𝐸

𝑛
.

The reported values are the average of the results for 50 inde-
pendent runs. As shown in Figure 11, for Ackley Function,
the number of fitness evaluations is least when 𝐻

𝑒
is equal

to 0.001𝐸
𝑛
. For Sphere Function, the number of fitness eval-

uations is less when 𝐻
𝑒
is equal to 0.001𝐸

𝑛
. Therefore, 𝐻

𝑒
is

equal to 0.001𝐸
𝑛
in the cloud particles evolution algorithm.

3.1.3. Definition of 𝐸
𝑥
. Ackley Function (multimode) and

Sphere Function (unimode) are selected to calculate the num-
ber of fitness evaluations (NFES) of the algorithm when the
solution reaches 𝑓 stop with 𝐸

𝑥
being equal to 𝑟, (1/2)𝑟,

(1/3)𝑟, (1/4)𝑟, and (1/5)𝑟, respectively. Let the search space
be [−𝑟, 𝑟], 𝑓 stop = 10

−3. As shown in Figure 12, for Ackley
Function, the number of fitness evaluations is least when 𝐸

𝑥

is equal to (1/2)𝑟. For Sphere Function, the number of fitness
evaluations is less when𝐸

𝑥
is equal to (1/2)𝑟 or (1/3)𝑟.There-

fore, 𝐸
𝑥
is equal to (1/2)𝑟 in the cloud particles evolution

algorithm.

3.1.4. Definition of 𝑐/𝑏. Many things in nature have the
mathematical proportion relationship between their parts. If
the substance is divided into two parts, the ratio of the whole
and the larger part is equal to the ratio of the larger part to the
smaller part; this ratio is defined as golden ratio, expressed
algebraically

𝑎 + 𝑏

𝑎
=
𝑎

𝑏

def
= 𝜑, (12)

in which 𝜑 represents the golden ration. Its value is

𝜑 =
1 + √5

2
= 1.6180339887,

1

𝜑
= 𝜑 − 1 = 0.618 ⋅ ⋅ ⋅ .

(13)

The golden section has a wide application not only in
the fields of painting, sculpture, music, architecture, and
management but also in nature. Studies have shown that plant
leaves, branches, or petals are distributed in accordance with
the golden ratio in order to survive in the wind, frost, rain,
and snow. It is the evolutionary result or the best solution
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Figure 12: NFES of CPEA in different 𝐸
𝑥

.

which adapts its own growth after hundreds of millions of
years of long-term evolutionary process.

In this model, competition and reciprocity of the pop-
ulation depend on the fitness and are a dynamic relation-
ship which constantly adjust and change. With competition
and reciprocity mechanism, the convergence speed and the
population diversity are improved. Premature convergence is
avoided, and large search space and complex computational
problems are solved. Indirect reciprocity is selected in this
paper. Here, set 𝑐/𝑏 = (1 − 0.618) ≈ 0.38.

3.2. Experiments Settings. For fair comparison, we set the
parameters to be fixed. For CPEA, population size = 5,
𝑐ℎ𝑖𝑙𝑑𝑛𝑢𝑚 = 30, 𝐸

𝑛
= (2/3)𝑟, (the search space is [−𝑟, 𝑟]),

𝐻
𝑒
= 𝐸
𝑛
/1000, 𝐸

𝑥
= (1/2)𝑟, cd = 1000, 𝛿 = 10

−2, and sf =
1000. For CMA-ES, the parameter values are chosen from
[27]. The parameters of JADE come from [28]. For PSO, the
parameter values are chosen from [29]. The parameters of
DE are set to be 𝐹 = 0.3 and CR = 0.9 used in [30]. For
ABC, the number of colony size NP = 20 and the number of
food sources FoodNumber = NP/2 and limit = 100. A food
source will not be exploited anymore and is assumed to be
abandoned when limit is exceeded for the source. For CEBA,
population size = 10, 𝑐ℎ𝑖𝑙𝑑𝑛𝑢𝑚 = 50, 𝐸

𝑛
= 1, and 𝐻

𝑒
=

𝐸
𝑛
/6. The parameters of PSO-cf-Local and FDR-PSO come

from [31, 32].

3.3. Comparison Strategies. Five comparison strategies come
from the literature [33] and literature [26] to evaluate the
algorithms. The comparison strategies are described as fol-
lows.

Successful Run. A run during which the algorithm achieves
the fixed accuracy level within the max number of function
evaluations for the particular dimension is shown as follows:

SR = successful runs
total runs

. (14)

Error. The error of a solution 𝑥 is defined as 𝑓(𝑥) − 𝑓(𝑥∗),
where 𝑥

∗ is the global minimum of the function. The

minimum error is written when the max number of function
evaluations is reached in 30 runs. Both the average and
standard deviation of the error values are calculated.

Convergence Graphs. The convergence graphs show the
median performance of the total runs with termination by
either the max number of function evaluations or the termi-
nation error value.

Number of Function Evaluations (NFES). The number of
function evaluations is recorded when the value-to-reach is
reached. The average and standard deviation of the number
of function evaluations are calculated.

Acceleration Rate (AR). The acceleration rate is defined as
follows, based on the NFES for the two algorithms:

AR =
NFES

𝑎1

NFES
𝑎2

, (15)

in which AR > 1 means Algorithm 2 (𝑎2) is faster than
Algorithm 1 (𝑎1).

The average acceleration rate (ARave) and the average
success rate (SRave) over 𝑛 test functions are calculated as
follows:

ARave =
1

𝑛

𝑛

∑

𝑖=1

AR
𝑖
,

SRave =
1

𝑛

𝑛

∑

𝑖=1

SR
𝑖
.

(16)

3.4. Comparison of CMA-ES, DE, RES, LOS, ABC, CEBA, and
CPEA. This section compares CMA-ES, DE, RES, LOS, ABC,
CEBA [34], and CPEA in terms of mean number of function
evaluations for successful runs. Results of CMA-ES, DE, RES,
and LOS are taken from literature [35]. Each run is stopped
and regarded as successful if the function value is smaller than
𝑓 stop.

As shown in Table 1, CPEA can reach 𝑓 stop faster than
other algorithms with respect to𝑓

07
and 𝑓
17
. However, CPEA

converges slower thanCMA-ESwith respect to𝑓
18
.When the
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Table 1: Average number of function evaluations to reach 𝑓 stop of CPEA versus CMA-ES, DE, RES, LOS, ABC, and CEBA on 𝑓
07

, 𝑓
17

, 𝑓
18

,
and 𝑓

33

function.

𝐹 𝑓 stop init 𝐷 CMA-ES DE RES LOS ABC CEBA CPEA

𝑓
07

1𝑒 − 3 [−600, 600]𝐷
20 3111 8691 — — 12463 94412 2950
30 4455 11410 2𝑒5 — 29357 163545 4270
100 12796 31796 — — 34777 458102 7260

𝑓
17

0.9 [−5.12, 5.12]𝐷 20 68586 12971 — 9.2𝑒4 11183 30436 2850

DE: [−600, 600]𝐷 30 147416 20150 1.0𝑒5 2.3𝑒5 26990 44138 6187
100 1010989 73620 — — 449404 60854 10360

𝑓
18

1𝑒 − 3 [−30, 30]𝐷
20 2667 — — 6.0𝑒4 10183 64400 3330
30 3701 12481 1.1𝑒5 9.3𝑒4 17810 91749 4100
100 11900 36801 — — 59423 205470 12248

𝑓
33

0.9 [−5.12, 5.12]𝐷 30 152000 1.25𝑒6 — — — 50578 13100
100 240899 5522 — — — 167324 14300

The bold entities indicate the best results obtained by the algorithm.𝐷 represents dimension.

dimension is 30, CPEA can reach 𝑓 stop relatively fast with
respect to𝑓

33
. Nonetheless, CPEA converges slower while the

dimension increases.

3.5. Comparison of CMA-ES, DE, PSO, ABC, CEBA, and
CPEA. This section compares the error of a solution of CMA-
ES, DE, PSO, ABC [36], CEBA, and CPEA under a given
NFES. The best solution of every single function in different
algorithms is highlighted with boldface.

As shown in Table 2, CPEA obtains better results in func-
tion𝑓

01
,𝑓
02
,𝑓
04
,𝑓
05
,𝑓
07
,𝑓
09
,𝑓
10
,𝑓
11
, and𝑓

12
while it obtains

relatively bad results in other functions. The reason for this
phenomenon is that the changing rule of𝐸

𝑛
is set according to

the priori information and background knowledge instead of
adaptive mechanism in CPEA.Therefore, the results of some
functions are relatively worse. Besides, 𝐸

𝑛
which can be opti-

mized in order to get better results is an important controlling
parameter in the algorithm.

3.6. Comparison of JADE, DE, PSO, ABC, CEBA, and CPEA.
This section compares JADE, DE, PSO, ABC, CEBA, and
CPEA in terms of SR and NFES for most functions at𝐷 = 30

except𝑓
03
(𝐷 = 2).The termination criterion is to find a value

smaller than 10−8. The best result of different algorithms for
each function is highlighted in boldface.

As shown in Table 3, CPEA can reach the specified pre-
cision successfully except for function 𝑓

14
which successful

run is 96. In addition, CPEA can reach the specified precision
faster than other algorithms in function 𝑓

01
, 𝑓
02
, 𝑓
04
, 𝑓
11
, 𝑓
14
,

and 𝑓
17
. For other functions, CPEA spends relatively long

time to reach the precision. The reason for this phenomenon
is that, for some functions, the changing rule of 𝐸

𝑛
given in

the algorithm makes CPEA to spend more time to get rid of
the local optima and converge to the specified precision.

As shown in Table 4, the solution obtained by CPEA is
closer to the best solution compared with other algorithms
except for functions 𝑓

13
and 𝑓

20
. The reason is that the phase

transformation mechanism introduced in the algorithm can
improve the convergence of the population greatly. Besides,

the reciprocity mechanism of the algorithm can improve the
adaptation and the diversity of the population in case the
algorithm falls into the local optimum. Therefore, the algo-
rithm can obtain better results in these functions.

As shown in Table 5, CPEA can find the optimal solution
for the test functions. However, the stability of CPEA is worse
than JADE and DE (𝑓

25
, 𝑓
26
, 𝑓
27
, 𝑓
28

and 𝑓
31
). This result

shows that the setting of𝐻
𝑒
needs to be further improved.

3.7. Comparison of CMAES, JADE, DE, PSO, ABC, CEBA, and
CPEA. The convergence curves of different algorithms on
some selected functions are plotted in Figures 13 and 14. The
solutions obtained by CPEA are better than other algorithms
with respect to functions 𝑓

01
, 𝑓
11
, 𝑓
16
, 𝑓
32
, and 𝑓

33
. However,

the solution obtained by CPEA is worse than CMA-ES with
respect to function 𝑓

04
. The solution obtained by CPEA is

worse than JADE for high dimensional problems such as
function 𝑓

05
and function 𝑓

07
. The reason is that the setting

of initial population of CPEA is insufficient for high dimen-
sional problems.

3.8. Comparison of DE, ODE, RDE, PSO, ABC, CEBA, and
CPEA. The algorithms DE, ODE, RDE, PSO, ABC, CBEA,
and CPEA are compared in terms of convergence speed. The
termination criterion is to find error values smaller than 10−8.
The results of solving the benchmark functions are given in
Tables 6 and 7. Data of all functions in DE, ODE, and RDE
are from literature [26].The best result ofNEFS and the SR for
each function are highlighted in boldface.The average success
rates and the average acceleration rate on test functions are
shown in the last row of the tables.

It can be seen fromTables 6 and 7 that CPEA outperforms
DE, ODE, RDE, PSO, ABC, andCBEA on 38 of the functions.
CPEAperforms better than other algorithms on 23 functions.
In Table 6, the average AR is 0.98, 0.86, 4.01, 6.36, 1.31, and
18.58 for ODE, RDE, PSO, ABC, CBEA, and CPEA, respec-
tively. In Table 7, the average AR is 1.27, 0.88, 1.12, 2.31, 0.46,
and 4.56 for ODE, RDE, PSO, ABC, CBEA, and CPEA,
respectively. In Table 6, the average SR is 0.96, 0.98, 0.96, 0.67,
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Table 2: Comparison on the ERROR values of CPEA versus CMA-ES, DE, PSO, ABC, and CEBA on function 𝑓
01

∼𝑓
13

.

𝐹 NFES 𝐷
CMA-ES
mean/SD

DE
mean/SD

PSO
mean/SD

ABC
mean/SD

CEBA
mean/SD

CPEA
mean/SD

𝑓
01

30 k 30 5.87e − 29/
1.56e − 29

3.20e − 07/
2.51e − 07

5.44e − 12/
1.56e − 11

9.71e − 16/
2.26e − 16

1.74e − 02/
1.55e − 02

3.19e − 33/
6.21e − 33

30 k 50 1.02e − 28/
1.87e − 29

2.95e − 03/
2.88e − 03

3.93e − 03/
6.62e − 02

2.35e − 08/
2.47e − 08

4.07e − 02/
2.11e − 02

1.09e − 48/
1.41e − 48

𝑓
02

10 k 30 1.50e − 05/
3.66e − 05

2.30e + 00/
1.78e + 00

6.24e − 06/
8.74e − 05

0.00e + 00/
0.00e + 00

6.16e + 00/
3.22e + 00

0.00e + 00/
0.00e + 00

50 k 50 0.00e + 00/
0.00e + 00

1.65e + 00/
2.05e + 00

3.87e + 00
2.65e + 00

0.00e + 00/
0.00e + 00

6.08e + 00/
5.34e + 00

0.00e + 00/
0.00e + 00

𝑓
03

10 k 2 2.65e − 30/
8.08e − 31

0.00e + 00/
0.00e + 00

5.01e − 14/
8.52e − 14

4.83e − 04/
1.40e − 03

5.83e − 04/
8.32e − 04

1.52e − 13/
2.44e − 13

𝑓
04

100 k 30 8.28e − 27/
1.69e − 27

2.47e − 03/
2.50e − 03

1.69e − 02/
2.57e − 02

1.36e + 00/
1.93e + 00

1.59e + 00/
7.93e + 00

3.31e − 14/
1.42e − 13

100 k 50 2.29e − 06/
2.22e − 06

7.37e − 01/
1.93e − 01

5.01e + 00/
3.88e + 00

1.19e + 02/
4.54e + 01

3.13e + 02/
3.94e + 02

3.98e − 07/
8.79e − 07

𝑓
05

30 k 30 8.19e − 09/
5.08e − 09

1.27e − 12/
3.94e − 12

8.66e − 34/
2.88e − 33

8.00e − 13/
2.24e − 12

2.54e − 09/
4.13e − 09

2.11e − 37/
4.20e − 36

50 k 50 2.68e − 08/
1.67e − 09

1.93e − 13/
2.01e − 13

4.37e − 54/
7.58e − 54

9.54e − 12/
1.55e − 11

1.34e − 15/
2.01e − 15

1.07e − 23/
1.85e − 23

𝑓
06

30 k 2 0.00e + 00/
0.00e + 00

0.00e + 00/
0.00e + 00

0.00e + 00/
0.00e + 00

3.60e − 09/
1.05e − 08

1.1e − 03/
8.2e − 04

7.71e − 09/
4.52e − 09

𝑓
07

30 k 30 1.88e − 12/
1.40e − 12

3.08e − 06/
5.41e − 06

1.64e − 09/
2.85e − 08

1.54e − 09/
2.78e − 08

2.07e − 06/
5.57e − 05

5.32e − 16/
7.59e − 16

50 k 50 0.00e + 00/
0.00e + 00

3.28e − 05/
5.69e − 05

1.79e − 02/
2.49e − 02

1.27e − 09/
2.21e − 09

9.49e − 03/
4.23e − 03

0.00e + 00/
0.00e + 00

𝑓
08

30 k 3 0.00e + 00/
0.00e + 00

0.00e + 00/
0.00e + 00

0.00e + 00/
0.00e + 00

0.00e + 00/
0.00e + 00

2.80e − 03/
2.13e − 03

3.85e − 06/
6.21e − 06

𝑓
09

30 k 2 0.00e + 00/
0.00e + 00

0.00e + 00/
0.00e + 00

0.00e + 00/
0.00e + 00

0.00e + 00/
0.00e + 00

0.00e + 00/
0.00e + 00

0.00e + 00/
0.00e + 00

𝑓
10

5 k 2 6.99e − 47/
2.21e − 46

1.28e − 26/
3.9e − 26

6.59e − 07/
7.71e − 07

2.32e − 04/
2.60e − 04

8.24e − 08/
1.37e − 07

8.29e − 59/
3.42e − 58

𝑓
11

30 k 30 1.23e − 04/
1.82e − 04

3.74e − 01/
2.91e − 01

4.78e − 01/
1.94e − 01

2.39e + 00/
3.27e + 00

1.42e + 00/
8.13e + 00

5.70e − 40/
6.61e − 39

50 k 50 5.58e − 01/
1.55e − 01

3.36e + 00/
1.55e + 00

3.15e + 01/
1.11e + 01

5.71e + 01/
6.98e + 00

2.05e + 01/
9.40e + 00

2.33e − 05/
3.58e − 05

𝑓
12

30 k 30 3.19e − 14/
1.45e − 14

1.20e − 08/
2.24e − 08

2.15e − 05/
5.18e − 04

3.56e − 10/
1.22e − 10

1.93e − 07/
6.45e − 08

2.33e − 23/
2.50e − 22

50 k 50 1.41e − 14/
2.43e − 14

6.77e − 05/
1.11e − 05

6.08e − 03/
3.35e − 03

6.37e − 10/
6.83e − 10

9.76e − 03/
3.08e − 03

1.90e − 72/
3.29e − 72

𝑓
13

30 k 30 3.94e − 11/
1.15e − 10

1.34e − 31/
3.21e − 31

1.34e − 31/
0.00e + 00

6.57e − 04/
3.77e − 03

2.09e − 02/
7.34e − 02

1.20e − 12/
2.82e − 12

50 k 50 3.08e − 03/
3.80e − 03

1.34e − 31/
0.00e + 00

1.34e − 31/
0.00e + 00

1.41e − 02/
9.29e − 03

4.22e − 02/
2.53e − 02

2.36e − 12/
1.04e − 12

“SD” stands for standard deviation.

0.79, 0.89, and 0.99 forDE,ODE,RDE, PSO,ABC,CBEA, and
CPEA, respectively. In Table 7, the average SR is 0.84, 0.84,
0.84, 0.73, 0.89, 0.77, and 0.98 for DE, ODE, RDE, PSO, ABC,
CBEA, and CPEA, respectively. These results clearly demon-
strate that CPEA has better performance.

3.9. Test on the CEC2013 Benchmark Problems. To further
verify the performance of CPEA, a set of recently proposed
CEC2013 rotated benchmark problems are used. In the exper-
iment, 𝑡-test [37] has been carried out to show the differences

between CPEA and the other algorithm. “General merit over
contender” displays the difference between the number of
better results and the number of worse results, which is used
to give an overall comparison between the two algorithms.
Table 8 gives the information about the average error, stan-
dard deviation, and 𝑡-value of 30 runs of 7 algorithms over
300,000 FEs on 20 test functionswith𝐷 = 10.The best results
among the algorithms are shown in bold.

Table 8 consists of unimodal problems (𝐹
01
–𝐹
05
) and

basic multimodal problems (𝐹
06
–𝐹
20
). From the results of
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Table 3: Comparison on the SR and the NFES of CPEA versus JADE, DE, PSO, ABC, and CEBA for each function.

𝐹

𝑓
01

mean/
SD

𝑓
02

mean/
SD

𝑓
03

mean/
SD

𝑓
04

mean/
SD

𝑓
07

mean/
SD

𝑓
11

mean/
SD

𝑓
14

mean/
SD

𝑓
16

mean/
SD

𝑓
17

mean/
SD

JADE SR 1 1 1 1 1 0.98 0.94 1 1

NFES 2.8e + 4/
6.0e + 2

1.0e + 4/
3.5e + 2

5.7e + 3/
6.9e + 2

6.9e + 4/
3.0e + 3

3.3e + 3/
2.6e + 2

6.6e + 4/
4.2e + 3

4.0e + 4/
2.1e + 3

1.3e + 3/
3.8e + 2

1.3e + 5/
1.8e + 3

DE SR 1 1 1 1 0.96 1 0.94 1 0

NFES 3.3e + 4/
6.6e + 2

1.1e + 4/
2.3e + 3

1.6e + 3/
1.1e + 2

1.9e + 5/
1.2e + 4

3.4e + 4/
1.6e + 3

1.4e + 5/
1.0e + 4

2.6e + 4/
1.6e + 4

2.1e + 4/
8.1e + 3 —

PSO SR 1 1 1 0 0.86 0 0 1 0

NFES 2.9e + 4/
7.5e + 2

1.6e + 4/
1.4e + 3

7.7e + 3/
9.6e + 2 — 2.8e + 4/

9.8e + 2 — — 1.8e + 4/
7.2e + 2 —

ABC SR 1 1 1 0 0.96 0 0 1 1

NFES 1.7e + 4/
1.0e + 3

6.3e + 3/
1.5e + 3

1.6e + 4/
2.6e + 3 — 1.9e + 4/

2.3e + 3 — — 6.5e + 3/
3.9e + 2

3.9e + 4/
1.5e + 4

CEBA SR 1 1 1 0 1 1 0.96 1 1

NFES 1.3e + 5/
5.8e + 3

5.9e + 4/
4.6e + 3

4.2e + 4/
6.1e + 3 — 2.2e + 5/

1.2e + 4
1.3e + 5/
5.8e + 3

2.9e + 5/
1.4e + 4

5.4e + 4/
3.8e + 3

1.1e + 5/
7.3e + 3

CPEA SR 1 1 1 1 1 1 0.96 1 1

NFES 4.3e + 3/
5.1e + 2

4.5e + 3/
2.7e + 2

5.7e + 3/
3.0e + 3

6.1e + 4/
2.6e + 3

7.7e + 3/
3.4e + 2

2.3e + 4/
3.4e + 3

3.4e + 4/
1.6e + 3

2.4e + 3/
4.3e + 2

1.0e + 4/
1.3e + 3

Table 4: Comparison on the ERROR values of CPEA versus JADE, DE, PSO, and ABC at𝐷 = 50 except 𝑓
21

(𝐷 = 2) and 𝑓
22

(𝐷 = 2) for each
function.

𝐹 NFES JADE mean/SD DE mean/SD PSO mean/SD ABC mean/SD CPEA mean/SD
𝑓
13

40 k 1.34e − 31/0.00e + 00 1.34e − 31/0.00e + 00 1.35e − 31/0.00e + 00 3.52e − 03/6.33e − 02 3.64e − 12/4.68e − 12
𝑓
15

40 k 9.18e − 11/7.04e − 11 2.94e − 05/3.66e − 05 1.81e − 09/4.18e − 08 4.11e − 14/2.62e − 14 4.59e − 53/1.36e − 52
𝑓
16

40 k 1.15e − 20/1.42e − 20 6.62e − 08/1.24e − 07 6.91e − 19/7.55e − 19 3.41e − 15/5.23e − 15 1.77e − 76/0.00e + 00
𝑓
17

200 k 6.71e − 07/1.32e − 07 2.58e − 01/6.15e − 01 6.73e + 00/2.06e + 00 6.07e − 09/1.85e − 08 0.00e + 00/0.00e + 00
𝑓
18

50 k 1.16e − 07/4.27e − 08 3.89e − 04/2.10e − 04 1.70e − 09/3.13e − 08 2.93e − 09/2.34e − 08 8.88e − 16/0.00e + 00
𝑓
19

40 k 1.14e − 02/1.68e − 02 9.90e − 03/6.66e − 03 9.00e − 06/1.62e − 05 2.22e − 05/1.95e − 04 1.64e − 64/5.13e − 64
𝑓
20

40 k 0.00e + 00/0.00e + 00 0.00e + 00/0.00e + 00 1.40e − 10/2.81e − 10 4.38e − 03/3.33e − 03 1.21e − 10/3.11e − 09
𝑓
21

30 k 0.00e + 00/0.00e + 00 0.00e + 00/0.00e + 00 0.00e + 00/0.00e + 00 1.06e − 17/3.34e − 17 0.00e + 00/0.00e + 00
𝑓
22

30 k 1.28e − 45/1.86e − 45 4.99e − 164/0.00e + 00 2.63e − 51/6.82e − 51 6.62e − 18/5.84e − 18 0.00e + 00/0.00e + 00
𝑓
23

30 k 0.00e + 00/0.00e + 00 0.00e + 00/0.00e + 00 0.00e + 00/0.00e + 00 0.00e + 00/4.24e − 04 0.00e + 00/0.00e + 00

Table 5: Comparison on the optimum solution of CPEA versus JADE, DE, PSO, and ABC for each function.

𝐹 NFES JADE mean/SD DE mean/SD PSO mean/SD ABC mean/SD CPEA mean/SD
𝑓
08

40 k −3.86278/0.00e + 00 −3.86278/0.00e + 00 −3.86278/6.20𝑒 − 17 −3.86278/0.00e + 00 −3.86278/0.00e + 00
𝑓
24

40 k −3.31044/3.60𝑒 − 02 −3.24608/5.70𝑒 − 02 −3.25800/5.90𝑒 − 02 −3.33539/0.00𝑒 + 00 −3.33539/3.03e − 06
𝑓
25

40 k −10.1532/4.00𝑒 − 14 −10.1532/4.20e − 16 −5.79196/3.30𝑒 + 00 −10.1532/1.25𝑒 − 13 −10.1532/1.58𝑒 − 09
𝑓
26

40 k −10.4029/9.40𝑒 − 16 −10.4029/2.50e − 16 −7.14128/3.50𝑒 + 00 −10.4029/1.77𝑒 − 15 −10.4029/1.94𝑒 − 10
𝑓
27

40 k −10.5364/8.10𝑒 − 12 −10.5364/7.10e − 16 −7.02213/3.60𝑒 + 00 −10.5364/4.03𝑒 − 05 −10.5364/2.02𝑒 − 09
𝑓
28

40 k 3.00000/1.10𝑒 − 15 3.00000/6.4e − 16 3.00000/1.30𝑒 − 15 3.00000/6.17𝑒 − 05 3.00000/2.01𝑒 − 15
𝑓
29

40 k 2.55𝑒 − 20/4.79𝑒 − 20 0.00e + 00/0.00e + 00 2.10𝑒 − 03/4.28𝑒 − 03 1.14𝑒 − 18/1.62𝑒 − 18 0.00e + 00/0.00e + 00
𝑓
30

40 k −2.3458/0.00e + 00 −2.3458/0.00e + 00 −2.3458/0.00e + 00 −2.3458/0.00e + 00 −2.3458/0.00e + 00
𝑓
31

40 k 4.78𝑒 − 31/1.07𝑒 − 30 3.59e − 55/1.13e − 54 1.22𝑒 − 36/3.85𝑒 − 36 1.40𝑒 − 11/1.38𝑒 − 11 8.69𝑒 − 25/1.14𝑒 − 24

𝑓
32

40 k 1.49𝑒 − 02/4.23𝑒 − 03 3.46𝑒 − 02/5.14𝑒 − 03 6.58𝑒 − 02/1.22𝑒 − 02 2.95𝑒 − 01/1.13𝑒 − 01 5.70e − 03/3.58e − 03
Data of functions 𝑓

08
, 𝑓
24
, 𝑓
25
, 𝑓
26
, 𝑓
27
, and 𝑓

28
in JADE, DE, and PSO are from literature [28].
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Figure 13: Convergence graph for test functions 𝑓
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, 𝑓
04

, 𝑓
16

, and 𝑓
32

(𝐷 = 30).

Table 8, we can see that PSO, ABC, PSO-FDR, PSO-cf-Local,
and CPEAwork well for 𝐹

01
, where PSO-FDR, PSO-cf-Local,

and CPEA can always achieve the optimal solution in each
run. CPEA outperforms other algorithms on𝐹

01
,𝐹
02
,𝐹
03
,𝐹
07
,

𝐹
08
, 𝐹
10
, 𝐹
12
, 𝐹
15
, 𝐹
16
, and 𝐹

18
; the cause of the outstanding

performance may be because of the phase transformation
mechanism, which leads to faster convergence in the late
stage of evolution.

4. Conclusions

This paper presents a new optimization method called cloud
particles evolution algorithm (CPEA).The fundamental con-
cepts and ideas come from the formation of the cloud and
the phase transformation of the substances in nature. In this
paper, CPEA solves 40 benchmark optimization problems
which have difficulties in discontinuity, nonconvexity, mul-
timode, and high-dimensionality. The evolutionary process
of the cloud particles is divided into three states: the cloud
gaseous state, the cloud liquid state, and the cloud solid state.
The algorithm realizes the change of the state of the cloud
with the phase transformation driving force according to
the evolutionary process. The algorithm reduces the popu-
lation number appropriately and increases the individuals
of subpopulations in each phase transformation. Therefore,
CPEA can improve the whole exploitation ability of the
population greatly and enhance the convergence. There is a

larger adjustment for 𝐸
𝑛
to improve the exploration ability

of the population in melting or gasification operation. When
the algorithm falls into the local optimum, it improves the
diversity of the population through the indirect reciprocity
mechanism to solve this problem.

As we can see from experiments, it is helpful to improve
the performance of the algorithmwith appropriate parameter
settings and change strategy in the evolutionary process. As
we all know, the benefit is proportional to the risk for solving
the practical engineering application problems.Generally, the
better the benefit is, the higher the risk is.We always hope that
the benefit is increased and the risk is reduced or controlled
at the same time. In general, the adaptive system adapts to
the dynamic characteristics change of the object and distur-
bance by correcting its own characteristics. Therefore, the
benefit is increased. However, the adaptive mechanism is
achieved at the expense of computational efficiency. Conse-
quently, the settings of parameter should be based on the
actual situation. The settings of parameters should be based
on the prior information and background knowledge in
some certain situations, or based on adaptive mechanism for
solving different problems in other situations. The adaptive
mechanismwill not be selected if the static settings can ensure
to generate more benefit and control the risk. Inversely, if the
adaptivemechanism can only ensure to generatemore benefit
while it cannot control the risk, we will not choose it. The
adaptive mechanism should be selected only if it can not only



Mathematical Problems in Engineering 15

0 5.000 10.000 15.000 20.000 25.000 30.000
NFES

M
ea

n 
of

 fu
nc

tio
n 

va
lu

es

CPEA
JADE
DE

PSO
ABC
CEBA

100

10−5

10−10

10−15

10−20

10−25

f05

CPEA
JADE
DE

PSO
ABC
CEBA

0 10.000 20.000 30.000 40.000 50.000
NFES

M
ea

n 
of

 fu
nc

tio
n 

va
lu

es

104

102

100

10−2

10−4

f11

CPEA
JADE
DE

PSO
ABC
CEBA

0 10.000 20.000 30.000 40.000 50.000
NFES

M
ea

n 
of

 fu
nc

tio
n 

va
lu

es

104

102

100

10−2

10−4

10−6

f07

CPEA
JADE
DE

PSO
ABC
CEBA

0 10.000 20.000 30.000 40.000 50.000
NFES

M
ea

n 
of

 fu
nc

tio
n 

va
lu

es 102

10−2

10−10

10−14

10−6
f33

Figure 14: Convergence graph for test functions 𝑓
05

, 𝑓
11

, 𝑓
33

(𝐷 = 50), and 𝑓
07

(𝐷 = 100).

increase the benefit but also reduce the risk. In CPEA, 𝐸
𝑛
and

𝐻
𝑒
are statically set according to the priori information and

background knowledge. As we can see from experiments, the
results from some functions are better while the results from
the others are relatively worse among the 40 tested functions.

As previously mentioned, parameter setting is an impor-
tant focus. Then, the next step is the adaptive settings of 𝐸

𝑛

and 𝐻
𝑒
. Through adaptive behavior, these parameters can

automatically modify the calculation direction according to
the current situation while the calculation is running. More-
over, possible directions for future work include improving
the computational efficiency and the quality of solutions of
CPEA. Finally, CPEA will be applied to solve large scale
optimization problems and engineering design problems.

Appendix

Test Functions

𝑓
01

Sphere model, 𝑓
01
(𝑥) = ∑

𝑛

𝑖=1

𝑥
2

𝑖

, [−100, 100],
min(𝑓

01
) = 0.

𝑓
02

Step function 𝑓
02
(𝑥) = ∑

𝑛

𝑖=1

(⌊𝑥
𝑖
+ 0.5⌋)

2, [−100,
100], min(𝑓

02
) = 0.

𝑓
03

Beale function 𝑓
03
(𝑥) = [1.5 − 𝑥

1
(1 − 𝑥

2
)]
2

+

[2.25−𝑥
1
(1−𝑥

2

2

)]
2

+[2.625−𝑥
1
(1−𝑥

3

2

)]
2, [−4.5, 4.5],

min(𝑓
03
) = 0.

𝑓
04

Schwefel’s problem 1.2 𝑓
04
(𝑥) = ∑

𝑛

𝑖=1

(∑
𝑖

𝑗=1

𝑥
𝑗
)
2

,
[−65, 65], min(𝑓

04
) = 0.

𝑓
05
Sum of different power 𝑓

05
(𝑥) = ∑

𝑛

𝑖=1

|𝑥
𝑖
|
𝑖+1, [−1,

1], min(𝑓
05
) = 𝑓(0, . . . , 0) = 0.

𝑓
06

Easom function 𝑓
06
(𝑥) =

− cos(𝑥
1
) cos(𝑥

2
) exp(−(𝑥

1
− 𝜋)
2

− (𝑥
2
− 𝜋)
2

), [−100,
100], min(𝑓

06
) = −1.

𝑓
07

Griewangk’s function 𝑓
07
(𝑥) = ∑

𝑛

𝑖=1

(𝑥
2

𝑖

/4000) −

∏
𝑛

𝑖=1

cos(𝑥
𝑖
/√𝑖) + 1, [−600, 600], min(𝑓

07
) = 0.

𝑓
08

Hartmann function 𝑓
08
(𝑥) =

−∑
4

𝑖=1

𝑎
𝑖
exp(−∑3

𝑗=1

𝐴
𝑖𝑗
(𝑥
𝑗
− 𝑃
𝑖𝑗
)
2

), [0, 1], min(𝑓
08
) =

−3.86278214782076. Consider
𝑎 = [1 1.2 3 3.2] ,

𝐴 =
[
[
[

[

3 10 30

0.1 10 35

3 10 30

0.1 10 35

]
]
]

]

,
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Table 8: Results for CEC2013 benchmark functions over 30 independent runs.

Function Result DE PSO ABC CEBA PSO-FDR PSO-cf-Local CPEA

𝐹
01

𝐹mean
SD

1.64e − 02(+)/
3.98e − 02

1.51e − 14(≈)/
5.76e − 14

1.51e − 14(≈)/
5.76e − 14

4.99e + 02(+)/
1.46e + 02

0.00e + 00(≈)/
0.00e + 00

0.00e + 00(≈)/
0.00e + 00

0.00e+00/
0.00e + 00

𝐹
02

𝐹mean
SD

1.20e + 05(+)/
1.50e + 05

1.73e + 05(+)/
2.02e + 05

3.31e + 06(+)/
1.13e + 06

3.95e + 06(+)/
1.60e + 06

4.37e + 04(+)/
3.76e + 04

2.11e + 04(≈)/
1.61e + 04

1.82e + 04/
1.12e + 04

𝐹
03

𝐹mean
SD

1.75e + 06(+)/
6.09e + 05

4.63e + 05(+)/
8.77e + 05

1.35e + 07(+)/
1.30e + 07

6.79e + 08(+)/
3.27e + 08

1.38e + 06(+)/
1.89e + 06

2.92e + 04(+)/
7.10e + 04

4.91e + 00/
2.52e + 01

𝐹
04

𝐹mean
SD

1.30e + 03(+)/
1.43e + 03

1.97e + 02(−)/
1.11e + 02

1.16e + 04(+)/
3.19e + 03

6.25e + 03(+)/
2.25e + 03

1.54e + 02(−)/
1.60e + 02

8.18e + 02(≈)/
5.26e + 02

7.26e + 02/
3.26e + 02

𝐹
05

𝐹mean
SD

1.38e − 01(+)/
3.62e − 01

5.30e − 14(−)/
5.76e − 14

1.62e − 13(−)/
5.72e − 14

1.15e + 02(+)/
9.45e + 01

7.57e − 15(−)/
2.88e − 14

0.00e + 00(−)/
0.00e + 00

7.72e − 05/
2.23e − 05

𝐹
06

𝐹mean
SD

6.30e + 00(≈)/
4.47e + 00

6.21e + 00(≈)/
4.36e + 00

1.51e + 00(−)/
2.90e + 00

5.72e + 01(+)/
1.94e + 01

5.28e + 00(≈)/
4.92e + 00

9.26e + 00(+)/
2.51e + 00

6.21e + 00/
4.80e + 00

𝐹
07

𝐹mean
SD

7.25e − 01(+)/
1.93e + 00

1.63e + 00(+)/
1.89e + 00

4.08e + 01(+)/
1.18e + 01

4.01e + 01(+)/
5.31e + 00

1.89e + 00(+)/
1.94e + 00

6.87e − 01(+)/
1.23e + 00

1.69e − 03/
3.05e − 03

𝐹
08

𝐹mean
SD

2.02e + 01(≈)/
6.33e − 02

2.02e + 01(≈)/
6.88e − 02

2.04e + 01(+)/
8.13e − 02

2.02e + 01(≈)/
5.86e − 02

2.02e + 01(≈)/
6.46e − 02

2.02e + 01(≈)/
7.73e − 02

2.02e + 01/
4.62e − 02

𝐹
09

𝐹mean
SD

1.03e + 00(−)/
8.41e − 01

2.97e + 00(≈)/
1.26e + 00

5.30e + 00(+)/
8.55e − 01

6.83e + 00(+)/
5.71e − 01

2.44e + 00(≈)/
1.37e + 00

2.26e + 00(≈)/
8.62e − 01

2.32e + 00/
1.29e + 00

𝐹
10

𝐹mean
SD

5.64e − 02(≈)/
4.11e − 02

3.88e − 01(+)/
2.90e − 01

1.42e + 00(+)/
3.27e − 01

6.24e + 01(+)/
1.40e + 01

3.39e − 01(+)/
2.25e − 01

1.12e − 01(+)/
5.53e − 02

5.35e − 02/
2.81e − 02

𝐹
11

𝐹mean
SD

7.29e − 01(−)/
8.63e − 01

5.63e − 01(−)/
7.24e − 01

0.00e + 00(−)/
0.00e + 00

4.56e + 01(+)/
5.89e + 00

6.63e − 01(−)/
6.57e − 01

1.22e + 00(−)/
1.29e + 00

7.95e + 00/
3.30e + 00

𝐹
12

𝐹mean
SD

5.31e + 00(≈)/
2.27e + 00

1.38e + 01(+)/
6.58e + 00

2.80e + 01(+)/
8.22e + 00

4.59e + 01(+)/
5.13e + 00

1.38e + 01(+)/
4.80e + 00

6.36e + 00(+)/
2.19e + 00

5.00e + 00/
1.21e + 00

𝐹
13

𝐹mean
SD

7.74e + 00(−)/
4.59e + 00

1.89e + 01(≈)/
6.14e + 00

3.39e + 01(+)/
9.86e + 00

4.68e + 01(+)/
8.05e + 00

1.53e + 01(≈)/
6.07e + 00

9.04e + 00(−)/
4.00e + 00

1.70e + 01/
8.72e + 00

𝐹
14

𝐹mean
SD

2.83e + 00(−)/
3.36e + 00

4.82e + 01(−)/
5.11e + 01

1.46e − 01(−)/
6.09e − 02

9.74e + 02(+)/
1.12e + 02

5.65e + 01(−)/
8.34e + 01

2.00e + 02(−)/
1.00e + 02

3.17e + 02/
1.53e + 02

𝐹
15

𝐹mean
SD

3.04e + 02(≈)/
2.03e + 02

6.88e + 02(+)/
2.91e + 02

7.35e + 02(+)/
1.94e + 02

7.21e + 02(+)/
1.65e + 02

6.38e + 02(+)/
1.92e + 02

3.90e + 02(+)/
1.24e + 02

3.02e + 02/
1.15e + 02

𝐹
16

𝐹mean
SD

9.56e − 01(+)
1.42e − 01

7.13e − 01(+)/
1.86e − 01

8.93e − 01(+)/
1.91e − 01

1.02e + 00(+)/
1.14e − 01

7.60e − 01(+)/
2.38e − 01

5.88e − 01(+)/
2.59e − 01

4.47e − 02/
4.10e − 02

𝐹
17

𝐹mean
SD

1.45e + 01(≈)/
4.11e + 00

8.74e + 00(−)/
4.71e + 00

8.55e + 00(−)/
2.61e + 00

4.64e + 01(+)/
7.21e + 00

1.32e + 01(≈)/
5.44e + 00

1.37e + 01(≈)/
1.15e + 00

1.43e + 01/
1.62e + 00

𝐹
18

𝐹mean
SD

2.29e + 01(+)/
5.49e + 00

2.31e + 01(+)/
1.04e + 01

4.01e + 01(+)/
5.84e + 00

5.48e + 01(+)/
6.62e + 00

2.10e + 01(+)/
5.05e + 00

1.85e + 01(≈)/
5.64e + 00

1.74e + 01/
4.65e + 00

𝐹
19

𝐹mean
SD

4.81e − 01(≈)/
1.88e − 01

5.44e − 01(≈)/
1.90e − 01

6.22e − 02(−)/
2.85e − 02

7.17e + 00(+)/
1.21e + 00

5.33e − 01(≈)/
1.58e − 01

4.61e − 01(≈)/
1.28e − 01

4.68e − 01/
1.69e − 01

𝐹
20

𝐹mean
SD

1.81e + 00(−)/
7.77e − 01

2.73e + 00(≈)/
7.18e − 01

3.40e + 00(+)/
2.40e − 01

3.08e + 00(+)/
2.19e − 01

2.10e + 00(−)/
5.25e − 01

2.54e + 00(≈)/
3.42e − 01

2.72e + 00/
5.83e − 01

General
merit over
contender

3 3 7 19 3 3

“+,” “−,” and “≈” denote that the performance of CPEA (𝐷 = 10) is better than, worse than, and similar to that of other algorithms.

𝑃 =

[
[
[
[
[

[

0.36890 0.11700 0.26730

0.46990 0.43870 0.74700

0.1091 0.8732 0.55470

0.03815 0.57430 0.88280

]
]
]
]
]

]

.

(A.1)

𝑓
09

Six Hump Camel back function 𝑓
09
(𝑥) = 4𝑥

2

1

−

2.1𝑥
4

1

+(1/3)𝑥
6

1

+𝑥
1
𝑥
2
−4𝑥
4

2

+4𝑥
4

2

, [−5, 5], min(𝑓
09
) =

−1.0316.

𝑓
10

Matyas function (dimension = 2) 𝑓
10
(𝑥) =

0.26(𝑥
2

1

+ 𝑥
2

2

) − 0.48𝑥
1
𝑥
2
, [−10, 10], min(𝑓

10
) = 0.

𝑓
11

Zakharov function 𝑓
11
(𝑥) = ∑

𝑛

𝑖=1

𝑥
2

𝑖

+

(∑
𝑛

𝑖=1

0.5𝑖𝑥
𝑖
)
2

+ (∑
𝑛

𝑖=1

0.5𝑖𝑥
𝑖
)
4, [−5, 10], min(𝑓

11
) = 0.

𝑓
12

Schwefel’s problem 2.22 𝑓
12
(𝑥) = ∑

𝑛

𝑖=1

|𝑥
𝑖
| +

∏
𝑛

𝑖=1

|𝑥
𝑖
|, [−10, 10], min(𝑓

12
) = 0.

𝑓
13

Levy function 𝑓
13
(𝑥) = sin2(3𝜋𝑥

1
) + ∑

𝑛−1

𝑖=1

(𝑥
𝑖
−

1)
2

× (1 + sin2(3𝜋𝑥
𝑖+1
)) + (𝑥

𝑛
− 1)
2

(1 + sin2(2𝜋𝑥
𝑛
)),

[−10, 10], min(𝑓
13
) = 0.
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𝑓
14
Schwefel’s problem 2.21 𝑓

14
(𝑥) = max{|𝑥

𝑖
|, 1 ≤ 𝑖 ≤

𝑛}, [−100, 100], min(𝑓
14
) = 0.

𝑓
15

Axis parallel hyperellipsoid 𝑓
15
(𝑥) = ∑

𝑛

𝑖=1

𝑖𝑥
2

𝑖

,
[−5.12, 5.12], min(𝑓

15
) = 0.

𝑓
16
De Jong’s function 4 (no noise) 𝑓

16
(𝑥) = ∑

𝑛

𝑖=1

𝑖𝑥
4

𝑖

,
[−1.28, 1.28], min(𝑓

16
) = 0.

𝑓
17

Rastrigin’s function 𝑓
17
(𝑥) = ∑

𝑛

𝑖=1

(𝑥
2

𝑖

−

10 cos(2𝜋𝑥
𝑖
) + 10), [−5.12, 5.12], min(𝑓

17
) = 0.

𝑓
18

Ackley’s path function 𝑓
18
(𝑥) =

−20 exp(−0.2√∑𝑛
𝑖=1

𝑥2
𝑖

/𝑛) − exp(∑𝑛
𝑖=1

cos(2𝜋𝑥
𝑖
)/𝑛) +

20 + 𝑒, [−32, 32], min(𝑓
18
) = 0.

𝑓
19
Alpine function 𝑓

19
(𝑥) = ∑

𝑛

𝑖=1

|𝑥
𝑖
sin(𝑥
𝑖
) + 0.1𝑥

𝑖
|,

[−10, 10], min(𝑓
19
) = 0.

𝑓
20

Pathological function 𝑓
20
(𝑥) = ∑

𝑛−1

𝑖

(0.5 +

(sin2√(100𝑥2
𝑖

+ 𝑥2
𝑖+1

) − 0.5)/(1 + 0.001(𝑥
2

𝑖

− 2𝑥
𝑖
𝑥
𝑖+1
+

𝑥
2

𝑖+1

)
2

)), [−100, 100], min(𝑓
20
) = 0.

𝑓
21

Schaffer’s function 6 (Dimension = 2) 𝑓
21
(𝑥) =

0.5+(sin2√(𝑥2
1

+ 𝑥2
2

)−0.5)/(1+0.01(𝑥
2

1

+𝑥
2

2

)
2

), [−10,
10], min(𝑓

21
) = 0.

𝑓
22

Camel Back-3 Three Hump Problem 𝑓
22
(𝑥) =

2𝑥
2

1

−1.05𝑥
4

1

+(1/6)𝑥
6

1

+𝑥
1
𝑥
2
+𝑥
2

2

, [−5, 5],min(𝑓
22
) = 0.

𝑓
23

Exponential Problem 𝑓
23
(𝑥) =

− exp(−0.5∑𝑛
𝑖=1

𝑥
2

𝑖

), [−1, 1], min(𝑓
23
) = −1.

𝑓
24

Hartmann function 2 (Dimension = 6) 𝑓
24
(𝑥) =

−∑
4

𝑖=1

𝑎
𝑖
exp(−∑6

𝑗=1

𝐵
𝑖𝑗
(𝑥
𝑗
− 𝑄
𝑖𝑗
)
2

), [0, 1],

𝑎 = [1 1.2 3 3.2] ,

𝐵 =

[
[
[
[
[

[

10 3 17 3.05 1.7 8

0.05 17 10 0.1 8 14

3 3.5 1.7 10 17 8

17 8 0.05 10 0.1 14

]
]
]
]
]

]

,

𝑄 =

[
[
[
[
[

[

0.1312 0.1696 0.5569 0.0124 0.8283 0.5886

0.2329 0.4135 0.8307 0.3736 0.1004 0.9991

0.2348 0.1451 0.3522 0.2883 0.3047 0.6650

0.4047 0.8828 0.8732 0.5743 0.1091 0.0381

]
]
]
]
]

]

,

(A.2)

min(𝑓
24
) = −3.33539215295525.

𝑓
25

Shekel’s Family 5 𝑚 = 5, min(𝑓
25
) = −10.1532,

𝑓
25
(𝑥) = −∑

𝑚

𝑖=1

[(𝑥
𝑖
− 𝑎
𝑖
)(𝑥
𝑖
− 𝑎
𝑖
)
𝑇

+ 𝑐
𝑖
]
−1,

𝑎 =



4 1 8 6 3 2 5 8 6 7

4 1 8 6 7 9 5 1 2 3.6

4 1 8 6 3 2 3 8 6 7

4 1 8 6 7 9 3 1 2 3.6



𝑇

, (A.3)

𝑐 =
0.1 0.2 0.2 0.4 0.4 0.6 0.3 0.7 0.5 0.5



𝑇.

Table 9

𝑖 𝑎
𝑖

𝑏
𝑖

𝑐
𝑖

𝑑
𝑖

1 0.5 0.0 0.0 0.1
2 1.2 1.0 0.0 0.5
3 1.0 0.0 −0.5 0.5
4 1.0 −0.5 0.0 0.5
5 1.2 0.0 1.0 0.5

𝑓
26
Shekel’s Family 7𝑚 = 7, min(𝑓

26
) = −10.4029,

𝑓
27

Shekel’s Family 10 𝑚 = 10, min(𝑓
27
) = 𝑓(4, 4, 4,

4) = −10.5364.
𝑓
28
Goldstein and Price [−2, 2], min(𝑓

28
) = 3

𝑓
28
(𝑥) = [1 + (𝑥

1
+ 𝑥
2
+ 1)
2

⋅ (19 − 14𝑥
1
+ 3𝑥
2

1

− 14𝑥
2
+ 6𝑥
1
𝑥
2
+ 3𝑥
2

2

)]

× [30 + (2𝑥
1
− 3𝑥
2
)
2

⋅ (18 − 32𝑥
1
+ 12𝑥

2

1

+ 48𝑥
2
− 36𝑥

1
𝑥
2
+ 27𝑥

2

2

)] .

(A.4)

𝑓
29

Becker and Lago Problem 𝑓
29
(𝑥) = (|𝑥

1
| − 5)
2

−

(|𝑥
2
| − 5)
2, [−10 ≤ 10], min(𝑓

29
) = 0.

𝑓
30
Hosaki Problem𝑓

30
(𝑥) = (1−8𝑥

1
+7𝑥
2

1

−(7/3)𝑥
3

1

+

(1/4)𝑥
4

1

)𝑥
2

2

exp(−𝑥
2
), 0 ≤ 𝑥

1
≤ 5, 0 ≤ 𝑥

2
≤ 6,

min(𝑓
30
) = −2.3458.

𝑓
31

Miele and Cantrell Problem 𝑓
31
(𝑥) =

(exp(𝑥
1
) − 𝑥
2
)
4

+100(𝑥
2
− 𝑥
3
)
6

+(tan(𝑥
3
− 𝑥
4
))
4

+𝑥
8

1

,
[−1, 1], min(𝑓

31
) = 0.

𝑓
32
Quartic function, that is, noise𝑓

32
(𝑥) = ∑

𝑛

𝑖=1

𝑖𝑥
4

𝑖

+

random[0, 1), [−1.28, 1.28], min(𝑓
32
) = 0.

𝑓
33

Rastrigin’s function A 𝑓
33
(𝑥) = 𝐹Rastrigin(𝑧),

[−5.12, 5.12], min(𝑓
33
) = 0.

𝑧 = 𝑥∗𝑀 𝐷 is the dimension,𝑀 is a𝐷×𝐷orthogonal
matrix.
𝑓
34

Multi-Gaussian Problem 𝑓
34
(𝑥) =

−∑
5

𝑖=1

𝑎
𝑖
exp(−(((𝑥

1
− 𝑏
𝑖
)
2

+ (𝑥
2
− 𝑐
𝑖
)
2

)/𝑑
2

𝑖

)), [−2, 2],
min(𝑓

34
) = −1.29695 (see Table 9).

𝑓
35

Inverted cosine wave function (Masters)
𝑓
35
(𝑥) = −∑

𝑛−1

𝑖=1

(exp((−(𝑥2
𝑖

+ 𝑥
2

𝑖+1

+ 0.5𝑥
𝑖
𝑥
𝑖+1
))/8) ×

cos(4√𝑥2
𝑖

+ 𝑥2
𝑖+1

+ 0.5𝑥
𝑖
𝑥
𝑖+1
)), [−5, ≤ 5], min(𝑓

35
) =

−𝑛 + 1.
𝑓
36
Periodic Problem 𝑓

36
(𝑥) = 1 + sin2𝑥

1
+ sin2𝑥

2
−

0.1 exp(−𝑥2
1

− 𝑥
2

2

), [−10, 10], min(𝑓
36
) = 0.9.

𝑓
37

Bohachevsky 1 Problem 𝑓
37
(𝑥) = 𝑥

2

1

+ 2𝑥
2

2

−

0.3 cos(3𝜋𝑥
1
) − 0.4 cos(4𝜋𝑥

2
) + 0.7, [−50, 50],

min(𝑓
37
) = 0.

𝑓
38

Bohachevsky 2 Problem 𝑓
38
(𝑥) = 𝑥

2

1

+ 2𝑥
2

2

−

0.3 cos(3𝜋𝑥
1
) cos(4𝜋𝑥

2
)+0.3, [−50, 50],min(𝑓

38
) = 0.
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𝑓
39

Salomon Problem 𝑓
39
(𝑥) = 1 − cos(2𝜋‖𝑥‖) +

0.1‖𝑥‖, [−100, 100], ‖𝑥‖ = √∑𝑛
𝑖=1

𝑥2
𝑖

, min(𝑓
39
) = 0.

𝑓
40
McCormick Problem𝑓

40
(𝑥) = sin(𝑥

1
+𝑥
2
)+(𝑥
1
−

𝑥
2
)
2

−(3/2)𝑥
1
+(5/2)𝑥

2
+1, −1.5 ≤ 𝑥

1
≤ 4, −3 ≤ 𝑥

2
≤

3, min(𝑓
40
) = −1.9133.
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