65 research outputs found

    Molecular cloning and expression analysis of adiponectin and its receptors (AdipoR1 and AdipoR2) in the hypothalamus of the Huoyan goose during different stages of the egg-laying cycle

    Get PDF
    Multiple amino acid sequence alignment of the Huoyan goose adiponectin protein with other vertebrate species. The colour black denotes 100 % conserved sequences, and the colour grey indicates non-conservative sequences. Gaps (−) were introduced to maximize the alignment. Sequences for the alignment were obtained from GenBank (accession numbers are in brackets): Anas platyrhynchos (ADA68839.1); Ovis aries (AHV91023.1); Canis lupus familiaris (BAD15362.1); Felis catus (BAF52934.1); Gallus (AAX40986.1); Homo sapiens (NP_004788.1); Meleagris gallopavo (XP_010714799.1); Mus musculus (NP_033735.3); and Sus scrofa (ABQ95350.1). (TIFF 3483 kb

    Gene Expression Profiling in the Pituitary Gland of Laying Period and Ceased Period Huoyan Geese

    Get PDF
    Huoyan goose is a Chinese local breed famous for its higher laying performance, but the problems of variety degeneration have emerged recently, especially a decrease in the number of eggs laid. In order to better understand the molecular mechanism that underlies egg laying in Huoyan geese, gene profiles in the pituitary gland of Huoyan geese taken during the laying period and ceased period were investigated using the suppression subtractive hybridization (SSH) method. Total RNA was extracted from pituitary glands of ceased period and laying period geese. The cDNA in the pituitary glands of ceased geese was subtracted from the cDNA in the pituitary glands of laying geese (forward subtraction); the reverse subtraction was also performed. After sequencing and annotation, a total of 30 and 24 up and down-regulated genes were obtained from the forward and reverse SSH libraries, respectively. These genes mostly related to biosynthetic process, cellular nitrogen compound metabolic process, transport, cell differentiation, cellular protein modification process, signal transduction, small molecule metabolic process. Furthermore, eleven genes were selected for further analyses by quantitative real-time PCR (qRT-PCR). The qRT-PCR results for the most part were consistent with the SSH results. Among these genes, Synaptotagmin-1 (SYT1) and Stathmin-2 (STMN2) were substantially over-expressed in laying period compared to ceased period. These results could serve as an important reference for elucidating the molecular mechanism of higher laying performance in Huoyan geese

    Laser Inter-Satellite Link Visibility and Topology Optimization for Mega Constellation

    No full text
    In this paper, we begin by describing the Starlink constellation’s configuration plan, treating each satellite as a network node, naming and numbering the various nodes, and then classifying the laser interstellar links (LISLs) according to their orbital alignment and whether they are permanently visible. Whereupon, the method for calculating the respective theoretical interstellar distances required for establishing LISLs under two distinct orbital scenarios, co-orbital and hetero-orbital are analyzed, and the optimal phasing factors are proposed by solving an optimization algorithm for the shortest distance. The OneWeb and Starlink constellations, as well as the constellation states of various phasing factors are simulated, respectively. The Starlink constellation with F = 11 obtains the best coverage between 60° north and south latitudes predicated upon the analysis of the constellation N Asset Coverage. Following that, the first phase of the Starlink constellation deployment was modeled in order to analyze and count the number of permanent LISLs in orbit, adjacent to, and nearby. Subsequently, the characteristics of azimuthal, elevation, and range (AER) were subsequently analyzed to ascertain their variation law and to compile the number of permanent and temporary LISLs that could be established at various inter-distance ranges. Finally, predicated on the simulation results, the optimal LISLs connection strategy for the Starlink constellation is evaluated and a static topology for the constellation is constructed

    Laser Inter-Satellite Link Visibility and Topology Optimization for Mega Constellation

    No full text
    In this paper, we begin by describing the Starlink constellation’s configuration plan, treating each satellite as a network node, naming and numbering the various nodes, and then classifying the laser interstellar links (LISLs) according to their orbital alignment and whether they are permanently visible. Whereupon, the method for calculating the respective theoretical interstellar distances required for establishing LISLs under two distinct orbital scenarios, co-orbital and hetero-orbital are analyzed, and the optimal phasing factors are proposed by solving an optimization algorithm for the shortest distance. The OneWeb and Starlink constellations, as well as the constellation states of various phasing factors are simulated, respectively. The Starlink constellation with F = 11 obtains the best coverage between 60° north and south latitudes predicated upon the analysis of the constellation N Asset Coverage. Following that, the first phase of the Starlink constellation deployment was modeled in order to analyze and count the number of permanent LISLs in orbit, adjacent to, and nearby. Subsequently, the characteristics of azimuthal, elevation, and range (AER) were subsequently analyzed to ascertain their variation law and to compile the number of permanent and temporary LISLs that could be established at various inter-distance ranges. Finally, predicated on the simulation results, the optimal LISLs connection strategy for the Starlink constellation is evaluated and a static topology for the constellation is constructed

    An Improved Brain Storm Optimization with Differential Evolution Strategy for Applications of ANNs

    No full text
    Brain Storm Optimization (BSO) algorithm is a swarm intelligence algorithm inspired by human being’s behavior of brainstorming. The performance of BSO is maintained by the creating process of ideas, but when it cannot find a better solution for some successive iterations, the result will be so inefficient that the population might be trapped into local optima. In this paper, we propose an improved BSO algorithm with differential evolution strategy and new step size method. Firstly, differential evolution strategy is incorporated into the creating operator of ideas to allow BSO jump out of stagnation, owing to its strong searching ability. Secondly, we introduce a new step size control method that can better balance exploration and exploitation at different searching generations. Finally, the proposed algorithm is first tested on 14 benchmark functions of CEC 2005 and then is applied to train artificial neural networks. Comparative experimental results illustrate that the proposed algorithm performs significantly better than the original BSO

    Comparative proteomic analysis of pituitary glands from Huoyan geese between pre-laying and laying periods using an iTRAQ-based approach.

    No full text
    In this study, we performed a comprehensive evaluation of the proteomic profile of the pituitary gland of the Huoyan goose during the laying period compared to the pre-laying period using an iTRAQ-based approach. Protein samples were prepared from pituitary gland tissues of nine pre-laying period and nine laying period geese. Then the protein samples from three randomly selected geese within each period were pooled in equal amounts to generate one biological sample pool. We identified 684 differentially expressed proteins, including 418 up-regulated and 266 down-regulated proteins. GO annotation and KEGG pathway analyses of these proteins were conducted. Some of these proteins were found to be associated with hormone and neurotransmitter secretion and transport, neuropeptide signalling and GnRH signalling pathways, among others. Subsequently, the modification of the abundance of three proteins (prolactin, chromogranin-A and ITPR3) was verified using western blotting. Our results will provide a new source for mining genes and gene products related to the egg-laying performance of Huoyan geese, and may provide important information for the conservation and utilization of local goose breeds

    Pretreatment with Tilianin improves mitochondrial energy metabolism and oxidative stress in rats with myocardial ischemia/reperfusion injury via AMPK/SIRT1/PGC-1 alpha signaling pathway

    No full text
    Mitochondrial energy metabolism and oxidative stress play a crucial role in ameliorating myocardial ischemia/reperfusion injury (MIRI). Tilianin has been reported to have a significant protection for mitochondrion in MIRI. However, the underlying mechanisms remain unknown. This study investigated whether Tilianin regulates mitochondrial energy metabolism and oxidative stress in MIRI via AMPK/SIRT1/PGC-1 alpha signaling pathway. The MIRI model was established by 30 min of coronary occlusion followed by 2 h of reperfusion in rats. The results revealed that Tilianin significantly reduced myocardial infarction, improved the pathological morphology of myocardium, markedly increased the contents of ATP and NAD+, decreased ADP and AMP contents and the ratio of AMP/ATP, reduced the level of ROS and MDA, enhanced SOD activity, evidently increased the levels of AMPK, SIRT1 and PGC-1 alpha mRNA, up-regulated the expressions of AMPK, pAMPK, SIRT1, PGC-1alpha, NRF1, TFAM and FOXO1 proteins. However, these effects were respectively abolished by Compound C (a specific AMPK inhibitor) and EX-527 (a specific SIRT1 inhibitor). Taken together, this study found that Tilianin could attenuate MIRI by improving mitochondrial energy metabolism and reducing oxidative stress via AMPK/SIRT1/PGC-1 alpha signaling pathway. Keywords: Tilianin, Myocardial ischemia/reperfusion injury, AMPK, SIRT1, PGC-1
    • …
    corecore