36 research outputs found

    Multilevel optimization of economic dispatching in active distribution network based on ADMM

    Get PDF
    With the continuous improvement of the penetration rate of renewable energy and the continuous integration of advanced network control technology and measurement equipment, the traditional distribution network is developing into an active distribution network (ADN) with the characteristics of flexible scheduling control, high user interaction, and high energy utilization. This article fully considers the economy of the overall operation of the distribution network, and proposes a hierarchical optimization economic dispatch method for active distribution networks based on the alternating direction multiplier method (ADMM). Firstly, a hierarchical optimization scheduling model of active distribution network is established with the goal of minimizing the overall operating cost of the distribution network. The alternating direction multiplier method algorithm is decomposed into upper and lower layers to solve. The upper layer is optimized with the goal of minimizing the overall operating cost of the distribution network, and the lower layer considers the distribution network. The distributed photovoltaic and energy storage units connected to the internal nodes of the network are optimized with the goal of minimizing the local energy storage operation cost and power purchase cost. The upper and lower layers, through the exchange of limited boundary information, iterate each other until the convergence conditions are met, and the optimal solution is obtained. Finally, a design example is tested to verify the effectiveness and feasibility of the proposed scheduling method

    Approach to Higher Wheat Yield in the Huang-Huai Plain: Improving Post-anthesis Productivity to Increase Harvest Index

    Get PDF
    Both increased harvest index (HI) and increased dry matter (DM) are beneficial to yield; however, little is known about the priority of each under different yield levels. This paper aims to determine whether HI or DM is more important and identify the physiological attributes that act as indicators of increased yield. Two field experiments involving different cultivation patterns and water-nitrogen modes, respectively, were carried out from 2013 to 2016 in Huang-Huai Plain, China. Plant DM, leaf area index (LAI), and radiation interception (RI) were measured. Increased yield under low yield levels <7500 kg ha-1 was attributed to an increase in both total DM and HI, while increases under higher yield levels >7500 kg ha-1 were largely dependent on an increase in HI. Under high yield levels, HI showed a significant negative correlation with total DM and a parabolic relationship with net accumulation of DM during filling. Higher net accumulation of DM during filling helped slow down the decrease in HI, thereby maintaining a high value. Moreover, net DM accumulation during filling was positively correlated with yield, while post-anthesis accumulation showed a significant linear relationship with leaf area potential (LAP, R2 = 0.404–0.526) and radiation interception potential (RIP, R2 = 0.452–0.576) during grain filling. These findings suggest that the increase in LAP and RIP caused an increase in net DM accumulation after anthesis. Under DM levels >13,000 kg ha-1 at anthesis, maintaining higher LAI and RI in lower layers during grain formation contributed to higher yield. Furthermore, the ratio of upper- to lower-layer RI showed a second-order curve with yield during filling, with an increase in the optimal range with grain development. Pre-anthesis translocation amount, translocation ratios and contribution ratios also showed second-order curves under high yield levels, with optimal values of 3000–4500 kg ha-1, 25–35, and 30–50%, respectively. These results confirm the importance of HI in improving the yield, thereby providing a theoretical basis for wheat production in the Huang-Huai Plain

    Age-related decline in hippocampal tyrosine phosphatase PTPRO is a mechanistic factor in chemotherapy-related cognitive impairment

    Get PDF
    Chemotherapy-related cognitive impairment (CRCI) or “chemo brain” is a devastating neurotoxic sequela of cancer-related treatments, especially for the elderly individuals. Here we show that PTPRO, a tyrosine phosphatase, is highly enriched in the hippocampus, and its level is tightly associated with neurocognitive function but declined significantly during aging. To understand the protective role of PTPRO in CRCI, a mouse model was generated by treating Ptpro–/– female mice with doxorubicin (DOX) because Ptpro–/– female mice are more vulnerable to DOX, showing cognitive impairments and neurodegeneration. By analyzing PTPRO substrates that are neurocognition-associated tyrosine kinases, we found that SRC and EPHA4 are highly phosphorylated/activated in the hippocampi of Ptpro–/– female mice, with increased sensitivity to DOX-induced CRCI. On the other hand, restoration of PTPRO in the hippocampal CA3 region significantly ameliorate CRCI in Ptpro–/– female mice. In addition, we found that the plant alkaloid berberine (BBR) is capable of ameliorating CRCI in aged female mice by upregulating hippocampal PTPRO. Mechanistically, BBR upregulates PTPRO by downregulating miR-25-3p, which directly targeted PTPRO. These findings collectively demonstrate the protective role of hippocampal PTPRO against CRCI.</p

    Age-related decline in hippocampal tyrosine phosphatase PTPRO is a mechanistic factor in chemotherapy-related cognitive impairment

    Get PDF
    Chemotherapy-related cognitive impairment (CRCI) or “chemo brain” is a devastating neurotoxic sequela of cancer-related treatments, especially for the elderly individuals. Here we show that PTPRO, a tyrosine phosphatase, is highly enriched in the hippocampus, and its level is tightly associated with neurocognitive function but declined significantly during aging. To understand the protective role of PTPRO in CRCI, a mouse model was generated by treating Ptpro–/– female mice with doxorubicin (DOX) because Ptpro–/– female mice are more vulnerable to DOX, showing cognitive impairments and neurodegeneration. By analyzing PTPRO substrates that are neurocognition-associated tyrosine kinases, we found that SRC and EPHA4 are highly phosphorylated/activated in the hippocampi of Ptpro–/– female mice, with increased sensitivity to DOX-induced CRCI. On the other hand, restoration of PTPRO in the hippocampal CA3 region significantly ameliorate CRCI in Ptpro–/– female mice. In addition, we found that the plant alkaloid berberine (BBR) is capable of ameliorating CRCI in aged female mice by upregulating hippocampal PTPRO. Mechanistically, BBR upregulates PTPRO by downregulating miR-25-3p, which directly targeted PTPRO. These findings collectively demonstrate the protective role of hippocampal PTPRO against CRCI.</p

    Age-related decline in hippocampal tyrosine phosphatase PTPRO is a mechanistic factor in chemotherapy-related cognitive impairment.

    Get PDF
    Chemotherapy-related cognitive impairment (CRCI) or chemo brain is a devastating neurotoxic sequela of cancer-related treatments, especially for the elderly individuals. Here we show that PTPRO, a tyrosine phosphatase, is highly enriched in the hippocampus, and its level is tightly associated with neurocognitive function but declined significantly during aging. To understand the protective role of PTPRO in CRCI, a mouse model was generated by treating Ptpro-/- female mice with doxorubicin (DOX) because Ptpro-/- female mice are more vulnerable to DOX, showing cognitive impairments and neurodegeneration. By analyzing PTPRO substrates that are neurocognition-associated tyrosine kinases, we found that SRC and EPHA4 are highly phosphorylated/activated in the hippocampi of Ptpro-/- female mice, with increased sensitivity to DOX-induced CRCI. On the other hand, restoration of PTPRO in the hippocampal CA3 region significantly ameliorate CRCI in Ptpro-/- female mice. In addition, we found that the plant alkaloid berberine (BBR) is capable of ameliorating CRCI in aged female mice by upregulating hippocampal PTPRO. Mechanistically, BBR upregulates PTPRO by downregulating miR-25-3p, which directly targeted PTPRO. These findings collectively demonstrate the protective role of hippocampal PTPRO against CRCI

    Age-related decline in hippocampal tyrosine phosphatase PTPRO is a mechanistic factor in chemotherapy-related cognitive impairment

    Get PDF
    Chemotherapy-related cognitive impairment (CRCI) or “chemo brain” is a devastating neurotoxic sequela of cancer-related treatments, especially for the elderly individuals. Here we show that PTPRO, a tyrosine phosphatase, is highly enriched in the hippocampus, and its level is tightly associated with neurocognitive function but declined significantly during aging. To understand the protective role of PTPRO in CRCI, a mouse model was generated by treating Ptpro–/– female mice with doxorubicin (DOX) because Ptpro–/– female mice are more vulnerable to DOX, showing cognitive impairments and neurodegeneration. By analyzing PTPRO substrates that are neurocognition-associated tyrosine kinases, we found that SRC and EPHA4 are highly phosphorylated/activated in the hippocampi of Ptpro–/– female mice, with increased sensitivity to DOX-induced CRCI. On the other hand, restoration of PTPRO in the hippocampal CA3 region significantly ameliorate CRCI in Ptpro–/– female mice. In addition, we found that the plant alkaloid berberine (BBR) is capable of ameliorating CRCI in aged female mice by upregulating hippocampal PTPRO. Mechanistically, BBR upregulates PTPRO by downregulating miR-25-3p, which directly targeted PTPRO. These findings collectively demonstrate the protective role of hippocampal PTPRO against CRCI.</p

    Transcriptomic Analyses Reveals Molecular Regulation of Photosynthesis by <i>Epichloë</i> endophyte in <i>Achnatherum inebrians</i> under <i>Blumeria graminis</i> Infection

    No full text
    Photosynthesis is essential for the growth of all green plants, and the presence of an Epichloë endophyte enhances the photosynthesis of Achnatherum inebrians (drunken horse grass, DHG), including when it is under attack by fungal pathogens. However, few studies have examined the mechanism of the increased photosynthetic activity at the molecular level of A. inebrians when it is under pathogen stress. The present study investigated the effects of the presence of the Epichloë endophyte on the net photosynthetic rate, intercellular CO2 concentration, stomatal conductance, and transpiration rate of DHG plants under a Blumeria graminis infection condition, and we compared the transcriptomes using RNA sequencing. The results showed that the photosynthetic rate of Epichloë endophyte-infected (E+) plants was higher under the B. graminis infection condition, and also without this pathogen, when it was compared with Epichloë endophyte-free (E-) plants. The E+ plants uninfected with B. graminis had 15 up-regulated unigenes that are involved in photosynthesis which were compared to the E- plants that were uninfected with this pathogen. This suggests that the presence of an Epichloë endophyte up-regulates the genes that are involved in the process of photosynthesis

    Bilayer MoS2 quantum dots with tunable magnetism and spin

    No full text
    Defects can alter the electronic, magnetic and spintronic properties of single- and few-layer MoS2 which are two-dimensional semiconductors with nonzero bandgaps. Here we discover by first-principles calculations with density functional theory that stacking faults with different rotational angles in bilayer MoS2 quantum dots modulate quantitatively the magnetism of the dots and the distributions of the spins and energy levels in their electronic structures. Our results suggest an avenue to design and tailor MoS2 quantum dots for electronics, optoelectronics, magnetics and spintronics

    Direct observation of multiple rotational stacking faults coexisting in freestanding bilayer MoS2.

    No full text
    Electronic properties of two-dimensional (2D) MoS2 semiconductors can be modulated by introducing specific defects. One important type of defect in 2D layered materials is known as rotational stacking fault (RSF), but the coexistence of multiple RSFs with different rotational angles was not directly observed in freestanding 2D MoS2 before. In this report, we demonstrate the coexistence of three RSFs with three different rotational angles in a freestanding bilayer MoS2 sheet as directly observed using an aberration-corrected transmission electron microscope (TEM). Our analyses show that these RSFs originate from cracks and dislocations within the bilayer MoS2. First-principles calculations indicate that RSFs with different rotational angles change the electronic structures of bilayer MoS2 and produce two new symmetries in their bandgaps and offset crystal momentums. Therefore, employing RSFs and their coexistence is a promising route in defect engineering of MoS2 to fabricate suitable devices for electronics, optoelectronics, and energy conversion

    BacPE: a versatile prime-editing platform in bacteria by inhibiting DNA exonucleases

    No full text
    Abstract Prime editing allows precise installation of any single base substitution and small insertions and deletions without requiring homologous recombination or double-strand DNA breaks in eukaryotic cells. However, the applications in bacteria are hindered and the underlying mechanisms that impede efficient prime editing remain enigmatic. Here, we report the determination of vital cellular factors that affect prime editing in bacteria. Genetic screening of 129 Escherichia coli transposon mutants identified sbcB, a 3ʹ→5ʹ DNA exonuclease, as a key genetic determinant in impeding prime editing in E. coli, combinational deletions of which with two additional 3ʹ→5ʹ DNA exonucleases, xseA and exoX, drastically enhanced the prime editing efficiency by up to 100-fold. Efficient prime editing in wild-type E. coli can be achieved by simultaneously inhibiting the DNA exonucleases via CRISPRi. Our results pave the way for versatile applications of prime editing for bacterial genome engineering
    corecore