48 research outputs found

    Effect of GARP on osteogenic differentiation of bone marrow mesenchymal stem cells via the regulation of TGFβ1 in vitro

    Get PDF
    Mesenchymal stem cells (MSCs), which have multipotential differentiation and self-renewal potential, are possible cells for tissue engineering. Transforming growth factor β1 (TGFβ1) can be produced by MSCs in an inactive form, and the activation of TGFβ1 functions as an important regulator of osteogenic differentiation in MSCs. Recently, studies showed that Glycoprotein A repetitions predominant (GARP) participated in the activation of latent TGFβ1, but the interaction between GARP and TGFβ1 is still undefined. In our study, we successfully isolated the MSCs from bone marrow of rats, and showed that GARP was detected in bone mesenchymal stem cells (BMSCs). During the osteogenic differentiation of BMSCs, GARP expression was increased over time. To elucidate the interaction between GARP and TGFβ1, we downregulated GARP expression in BMSCs to examine the level of active TGFβ1. We then verified that the downregulation of GARP decreased the secretion of active TGFβ1. Furthermore, osteogenic differentiation experiments, alkaline phosphatase (ALP) activity analyses and Alizarin Red S staining experiments were performed to evaluate the osteogenic capacity. After the downregulation of GARP, ALP activity and Alizarin Red S staining significantly declined and the osteogenic indicators, ALP, Runx2, and OPN, also decreased, both at the mRNA and protein levels. These results demonstrated that downregulated GARP expression resulted in the reduction of TGFβ1 and the attenuation of osteoblast differentiation of BMSCs in vitro

    A novel dilated contextual attention module for breast cancer mitosis cell detection

    Get PDF
    Background and object: Mitotic count (MC) is a critical histological parameter for accurately assessing the degree of invasiveness in breast cancer, holding significant clinical value for cancer treatment and prognosis. However, accurately identifying mitotic cells poses a challenge due to their morphological and size diversity.Objective: We propose a novel end-to-end deep-learning method for identifying mitotic cells in breast cancer pathological images, with the aim of enhancing the performance of recognizing mitotic cells.Methods: We introduced the Dilated Cascading Network (DilCasNet) composed of detection and classification stages. To enhance the model’s ability to capture distant feature dependencies in mitotic cells, we devised a novel Dilated Contextual Attention Module (DiCoA) that utilizes sparse global attention during the detection. For reclassifying mitotic cell areas localized in the detection stage, we integrate the EfficientNet-B7 and VGG16 pre-trained models (InPreMo) in the classification step.Results: Based on the canine mammary carcinoma (CMC) mitosis dataset, DilCasNet demonstrates superior overall performance compared to the benchmark model. The specific metrics of the model’s performance are as follows: F1 score of 82.9%, Precision of 82.6%, and Recall of 83.2%. With the incorporation of the DiCoA attention module, the model exhibited an improvement of over 3.5% in the F1 during the detection stage.Conclusion: The DilCasNet achieved a favorable detection performance of mitotic cells in breast cancer and provides a solution for detecting mitotic cells in pathological images of other cancers

    LMDI decomposition analysis of total electricity consumption growth in Hunan province

    No full text
    In the past decade, as an important driving force of economic growth, the China’s electricity consumption growth rate has been decoupled from GDP growth rate. The economic reasons behind this abnormal phenomenon are worthy of further study. Based on the LMDI method, this paper built a model to decompose the total electricity consumption in Hunan province from 2010 to 2017 from the industrial and residential perspective. The results showed that: integrally, scale effect was the main driving factor of electricity consumption growth, intensity effect was the main inhibiting factor, and structure effect had no obvious influence; there are significant differences between the results of industrial and residential sectors, for the industry, the productive consumption intensity effect was the most significant factor that inhibited the growth of electricity consumption, while all the effects of residential sector were shown as promotion, and the increase of electricity consumption in the residential sector played a key role in the growth rate of electricity consumption in Hunan province

    De novo Assembly of the Camellia nitidissima Transcriptome Reveals Key Genes of Flower Pigment Biosynthesis

    No full text
    The golden camellia, Camellia nitidissima Chi., is a well-known ornamental plant that is known as “the queen of camellias” because of its golden yellow flowers. The principal pigments in the flowers are carotenoids and flavonol glycosides. Understanding the biosynthesis of the golden color and its regulation is important in camellia breeding. To obtain a comprehensive understanding of flower development in C. nitidissima, a number of cDNA libraries were independently constructed during flower development. Using the Illumina Hiseq2500 platform, approximately 71.8 million raw reads (about 10.8 gigabase pairs) were obtained and assembled into 583,194 transcripts and 466, 594 unigenes. A differentially expressed genes (DEGs) and co-expression network was constructed to identify unigenes correlated with flower color. The analysis of DEGs and co-expressed network involved in the carotenoid pathway indicated that the biosynthesis of carotenoids is regulated mainly at the transcript level and that phytoene synthase (PSY), β -carotene 3-hydroxylase (CrtZ), and capsanthin synthase (CCS1) exert synergistic effects in carotenoid biosynthesis. The analysis of DEGs and co-expressed network involved in the flavonoid pathway indicated that chalcone synthase (CHS), naringenin 3-dioxygenase (F3H), leucoanthocyanidin dioxygenase(ANS), and flavonol synthase (FLS) play critical roles in regulating the formation of flavonols and anthocyanidin. Based on the gene expression analysis of the carotenoid and flavonoid pathways, and determinations of the pigments, we speculate that the high expression of PSY and CrtZ ensures the production of adequate levels of carotenoids, while the expression of CHS, FLS ensures the production of flavonols. The golden yellow color is then the result of the accumulation of carotenoids and flavonol glucosides in the petals. This study of the mechanism of color formation in golden camellia points the way to breeding strategies that exploit gene technology approaches to increase the content of carotenoids and flavonol glucosides and to decrease anthocyanidin synthesis

    Friction Stir Spot Welding-Brazing of Al and Hot-Dip Aluminized Ti Alloy with Zn Interlayer

    No full text
    Friction stir spot welding (FSSW) of Al to Ti alloys has broad applications in the aerospace and automobile industries, while its narrow joining area limits the improvement of mechanical properties of the joint. In the current study, an Al-coating was prepared on Ti6Al4V alloy by hot-dipping prior to joining, then a Zn interlayer was used during friction stir joining of as-coated Ti alloy to the 2014-Al alloy in a lap configuration to introduce a brazing zone out of the stir zone to increase the joining area. The microstructure of the joint was investigated, and the joint strength was compared with the traditional FSSW joint to confirm the advantages of this new process. Because of the increase of the joining area, the maximum fracture load of such joint is 110% higher than that of the traditional FSSW joint under the same welding parameters. The fracture load of these joints depends on the joining width, including the width of solid-state bonding region in stir zone and brazing region out of stir zone

    Functional Diversification of the Dihydroflavonol 4-Reductase from Camellia nitidissima Chi. in the Control of Polyphenol Biosynthesis

    No full text
    Plant secondary metabolism is complex in its diverse chemical composition and dynamic regulation of biosynthesis. How the functional diversification of enzymes contributes to the diversity is largely unknown. In the flavonoids pathway, dihydroflavonol 4-reductase (DFR) is a key enzyme mediating dihydroflavanol into anthocyanins biosynthesis. Here, the DFR homolog was identified from Camellia nitidissima Chi. (CnDFR) which is a unique species of the genus Camellia with golden yellow petals. Sequence analysis showed that CnDFR possessed not only conserved catalytic domains, but also some amino acids peculiar to Camellia species. Gene expression analysis revealed that CnDFR was expressed in all tissues and the expression of CnDFR was positively correlated with polyphenols but negatively with yellow coloration. The subcellular localization of CnDFR by the tobacco infiltration assay showed a likely dual localization in the nucleus and cell membrane. Furthermore, overexpression transgenic lines were generated in tobacco to understand the molecular function of CnDFR. The analyses of metabolites suggested that ectopic expression of CnDFR enhanced the biosynthesis of polyphenols, while no accumulation of anthocyanins was detected. These results indicate a functional diversification of the reductase activities in Camellia plants and provide molecular insights into the regulation of floral color

    Multi-Dimensional Optical Fiber Sensing Enabled by Digital Coherent Optical Technologies

    No full text
    corecore