3 research outputs found

    3D-printed integrative probeheads for magnetic resonance

    Get PDF
    射频探头前端作为核磁共振设备的核心部件之一,极大程度的决定着系统实验性能的优劣。探头前端通常由射频线圈、射频电路及样品检测管道等部分组成。现有的射频线圈制作技术主要是通过手工或机械手段按照所需的线圈形状进行绕制。但是,当线圈结构较为复杂、不规则,或体积尺寸较小时,常规绕制方法便难以满足结构设计和制造的精度需求,因此造成线圈性能的劣化,增大检测区域的射频场不均匀性,对核磁共振检测产生负面影响。本研究中,利用3D打印熔融沉积制造或光敏树脂选择性固化技术精确加工出一体化磁共振探头前端,使用常温液态金属填充线圈模型管路形成射频线圈,搭建出稳定的一体化磁共振射频探头。利用高精度3D打印和液态金属灌注技术制备出包含有射频线圈和定制化样品管道结构在内的一体化磁共振射频探头前端,克服了传统磁共振三维微型线圈成型困难、与样品腔匹配程度差等问题,提高了探头的信噪比,为定制化的磁共振检测提供了新思路。 该工作由厦门大学电子科学与技术学院陈忠教授、游学秋副研究员和孙惠军高级工程师共同指导完成,博士研究生谢君尧为论文第一作者。厦门大学电子科学与技术学院黄玉清高级工程师、王忻昌副教授、倪祖荣助理教授、硕士研究生张德超,化学化工学院杨朝勇教授、博士研究生李星锐,萨本栋微米纳米科学技术研究院陈宏教授为合作作者。【Abstract】Magnetic resonance (MR) technology has been widely employed in scientific research, clinical diagnosis and geological survey. However, the fabrication of MR radio frequency probeheads still face difficulties in integration, customization and miniaturization. Here, we utilized 3D printing and liquid metal filling techniques to fabricate integrative radio frequency probeheads for MR experiments. The 3D-printed probehead with micrometer precision generally consists of liquid metal coils, customized sample chambers and radio frequency circuit interfaces. We screened different 3D printing materials and optimized the liquid metals by incorporating metal microparticles. The 3D-printed probeheads are capable of performing both routine and nonconventional MR experiments, including in situ electrochemical analysis, in situ reaction monitoring with continues-flow paramagnetic particles and ions separation, and small-sample MR imaging. Due to the flexibility and accuracy of 3D printing techniques, we can accurately obtain complicated coil geometries at the micrometer scale, shortening the fabrication timescale and extending the application scenarios.The work is supported by the National Natural Science Foundation of China (Grants U1632274, 11761141010, U1805261, 11475142, 22073078, and 61801411), and China Postdoctoral Science Foundation (2017M622075).研究工作得到国家自然科学基金、中国博士后科学基金等项目支持

    Effect of β-cyclodextrin on the hemocompatibility of heparin-modified PMP hollow fibrous membrane for Extracorporeal Membrane Oxygenation (ECMO)

    No full text
    In this paper, modified membranes containing β-cyclodextrin (β-CD) and heparin coatings were prepared on the surface of poly-4-methyl-1-pentene (PMP) hollow fibrous membrane using the high strength adhesion of polydopamine (PDA). In this paper, β-CD was added to increase the hemocompatibility of the PMP hollow fibrous membranes and the stability of the heparin coating. The uniformity of the heparin coating with β-CD addition was better than that of the groups without β-CD. After seven days of saline rinsing, the surface of the modified membranes with β-CD addition still had a large amount of heparin present, which was more stable compared to the control group. After surface modification, the modified membrane changed from hydrophobic to hydrophilic. Importantly, the protein adsorption, platelet adhesion, and hemolysis rates of the modified membranes were significantly reduced compared with the pristine membranes. The APTT values were also significantly increased. The results showed that the modified membranes with the addition of β-CD had better hydrophilicity, can maintain the stability of heparin coating for a long time, and finally showed good hemocompatibility
    corecore