45 research outputs found

    A microsatellite diversity analysis and the development of core-set germplasm in a large hulless barley (Hordeum vulgare L.) collection

    No full text
    Abstract Background Clarifying genetic diversity in a large germplasm resource plays important roles in experimental designs that provides flexible utility in fundamental research and breeding in crops. However, the work is limited due to small collections of barley that are insufficient representatives. Results In the present study, we collected 562 hulless barley (Hordeum vulgare L.) accessions with worldwide geographic origins and evaluated their genetic variability and relatedness based on 93 simple sequence repeat (SSR) markers. In an integrated analysis of the population structure, analysis of molecular variance (AMOVA) and pairwise F ST, the 562 barley accessions exhibited a strong stratification that allowed for them to be divided into two major subpopulations (p1 and p2) and an admixture subpopulation, with 93, 408 and 61 accessions, respectively. In a neutral test, considerable proportions of SSR alleles expressed the strong non-neutrality in specific subpopulations (44 and 37), which are probably responsible for population differentiation. To reduce the diversity redundancy in large barley collections, we delicately selected a core set of 200 barley accessions as a tradeoff between diversity and representativeness in an easily handled population. In comparing the 562 barley accessions, the core barley set accounted for 96.2% of allelic diversity and 93% to 95% of phenotypic variability, whereas it exhibited a significant enhancement in minor allelic frequencies, which probably benefit association mapping in the barley core set. Conclusions The results provided additional insight into the genetic structure in a large barley germplasm resource, from which an easily manageable barley core set was identified, demonstrating the great potential for discovering key QTLs and ultimately facilitating barley breeding progress

    Comparative transcriptome analysis revealed genes commonly responsive to varied nitrate stress in leaves of Tibetan hulless barley

    Get PDF
    Nitrogen (N) deprivation or excess can lead to dramatic phenotype change, disrupt important biological processes, and ultimately limit plant productivity. To explore genes in Tibetan hulless barley responsive to varied N stress, we utilized a comparative transcriptomics method to investigate gene expression patterns under three nitrate treatments. The transcriptome of the control (optimal-nitrate, ON) sample was compared with that of free-nitrate (FN), low-nitrate (LN) and high-nitrate (HN) treatment samples, identifying 2,428, 1,274, and 1,861 genes, respectively, that exhibited significant differences in transcript abundance. Among these, 9 genes encoding ribulose bisphosphate carboxylases exhibited up-regulated expression under varied N stress. We further compared FN versus ON and LN versus ON to investigate the impact of stress degree on gene expression. With the aggravation of stress, more genes were differentially expressed and thus possibly involved in the response to nitrogen deficiency. Cluster and functional enrichment analysis indicated that the differentially expressed genes (DEGs) in FN were highly enriched in response to stress, defense response, and gene expression regulation. Comprehensive comparison analysis further suggested that Tibetan hulless barley could respond to varied N stress by regulating multiple common biological processes and pathways such as nitrogen metabolism, carbon metabolism, and photosynthesis. A large number of specific DEGs involved in diverse biological processes were also detected, implying differences in the potential regulatory patterns of low- and high-N stress response. Notably, we also identified some NIN-like proteins and other transcription factors significantly modulated by these stresses, suggesting the involvement of these transcription factors in N stress response. To our knowledge, this study is the first investigation of the Tibetan hulless barley transcriptome under N stress. The identified N-stress-related genes may provide resources for genetic improvement and promote N use efficiency

    Table_6_Genetic architecture of inducible and constitutive metabolic profile related to drought resistance in qingke (Tibetan hulless barley).xlsx

    No full text
    Qingke (Tibetan hulless barley, Hordeum vulgare L. var. nudum) is the primary food crop on the Tibet Plateau, the long-term drought and other harsh environments makes qingke an important resource for the study of abiotic resistance. Here, we evaluated the drought sensitivity of 246 qingke varieties. Genome-wide association studies (GWAS) found that root-specific expressed gene CYP84 may be involved in the regulation of drought resistance. Based on widely targeted metabolic profiling, we identified 2,769 metabolites in qingke leaves, of which 302 were significantly changed in response to drought stress, including 4-aminobutyric acid (GABA), proline, sucrose and raffinose. Unexpectedly, these drought-induced metabolites changed more violently in drought-sensitive qingkes, while the constitutive metabolites that had little response to drought stress, such as C-glycosylflavonoids and some amino acids, accumulated excessively in drought-resistant qingkes. Combined with metabolite-based genome-wide association study (mGWAS), a total of 1,006 metabolites under optimal condition and 1,031 metabolites under mild drought stress had significant associated loci. As a marker metabolite induced by drought stress, raffinose was significantly associated with two conservatively adjacent α-galactosidase genes, qRT-PCR suggests that these two genes may jointly regulate the raffinose content in qingke. Besides, as constituent metabolites with stable differences between drought-sensitive and drought-resistant qingkes, a class of C-glycosylflavonoids are simultaneously regulated by a UDP-glucosyltransferase gene. Overall, we performed GWAS for sensitivity and widely targeted metabolites during drought stress in qingke for the first time, which provides new insights into the response mechanism of plant drought stress and drought resistance breeding.</p

    Table_7_Genetic architecture of inducible and constitutive metabolic profile related to drought resistance in qingke (Tibetan hulless barley).xlsx

    No full text
    Qingke (Tibetan hulless barley, Hordeum vulgare L. var. nudum) is the primary food crop on the Tibet Plateau, the long-term drought and other harsh environments makes qingke an important resource for the study of abiotic resistance. Here, we evaluated the drought sensitivity of 246 qingke varieties. Genome-wide association studies (GWAS) found that root-specific expressed gene CYP84 may be involved in the regulation of drought resistance. Based on widely targeted metabolic profiling, we identified 2,769 metabolites in qingke leaves, of which 302 were significantly changed in response to drought stress, including 4-aminobutyric acid (GABA), proline, sucrose and raffinose. Unexpectedly, these drought-induced metabolites changed more violently in drought-sensitive qingkes, while the constitutive metabolites that had little response to drought stress, such as C-glycosylflavonoids and some amino acids, accumulated excessively in drought-resistant qingkes. Combined with metabolite-based genome-wide association study (mGWAS), a total of 1,006 metabolites under optimal condition and 1,031 metabolites under mild drought stress had significant associated loci. As a marker metabolite induced by drought stress, raffinose was significantly associated with two conservatively adjacent α-galactosidase genes, qRT-PCR suggests that these two genes may jointly regulate the raffinose content in qingke. Besides, as constituent metabolites with stable differences between drought-sensitive and drought-resistant qingkes, a class of C-glycosylflavonoids are simultaneously regulated by a UDP-glucosyltransferase gene. Overall, we performed GWAS for sensitivity and widely targeted metabolites during drought stress in qingke for the first time, which provides new insights into the response mechanism of plant drought stress and drought resistance breeding.</p

    Table_4_Genetic architecture of inducible and constitutive metabolic profile related to drought resistance in qingke (Tibetan hulless barley).xlsx

    No full text
    Qingke (Tibetan hulless barley, Hordeum vulgare L. var. nudum) is the primary food crop on the Tibet Plateau, the long-term drought and other harsh environments makes qingke an important resource for the study of abiotic resistance. Here, we evaluated the drought sensitivity of 246 qingke varieties. Genome-wide association studies (GWAS) found that root-specific expressed gene CYP84 may be involved in the regulation of drought resistance. Based on widely targeted metabolic profiling, we identified 2,769 metabolites in qingke leaves, of which 302 were significantly changed in response to drought stress, including 4-aminobutyric acid (GABA), proline, sucrose and raffinose. Unexpectedly, these drought-induced metabolites changed more violently in drought-sensitive qingkes, while the constitutive metabolites that had little response to drought stress, such as C-glycosylflavonoids and some amino acids, accumulated excessively in drought-resistant qingkes. Combined with metabolite-based genome-wide association study (mGWAS), a total of 1,006 metabolites under optimal condition and 1,031 metabolites under mild drought stress had significant associated loci. As a marker metabolite induced by drought stress, raffinose was significantly associated with two conservatively adjacent α-galactosidase genes, qRT-PCR suggests that these two genes may jointly regulate the raffinose content in qingke. Besides, as constituent metabolites with stable differences between drought-sensitive and drought-resistant qingkes, a class of C-glycosylflavonoids are simultaneously regulated by a UDP-glucosyltransferase gene. Overall, we performed GWAS for sensitivity and widely targeted metabolites during drought stress in qingke for the first time, which provides new insights into the response mechanism of plant drought stress and drought resistance breeding.</p

    Table_9_Genetic architecture of inducible and constitutive metabolic profile related to drought resistance in qingke (Tibetan hulless barley).xlsx

    No full text
    Qingke (Tibetan hulless barley, Hordeum vulgare L. var. nudum) is the primary food crop on the Tibet Plateau, the long-term drought and other harsh environments makes qingke an important resource for the study of abiotic resistance. Here, we evaluated the drought sensitivity of 246 qingke varieties. Genome-wide association studies (GWAS) found that root-specific expressed gene CYP84 may be involved in the regulation of drought resistance. Based on widely targeted metabolic profiling, we identified 2,769 metabolites in qingke leaves, of which 302 were significantly changed in response to drought stress, including 4-aminobutyric acid (GABA), proline, sucrose and raffinose. Unexpectedly, these drought-induced metabolites changed more violently in drought-sensitive qingkes, while the constitutive metabolites that had little response to drought stress, such as C-glycosylflavonoids and some amino acids, accumulated excessively in drought-resistant qingkes. Combined with metabolite-based genome-wide association study (mGWAS), a total of 1,006 metabolites under optimal condition and 1,031 metabolites under mild drought stress had significant associated loci. As a marker metabolite induced by drought stress, raffinose was significantly associated with two conservatively adjacent α-galactosidase genes, qRT-PCR suggests that these two genes may jointly regulate the raffinose content in qingke. Besides, as constituent metabolites with stable differences between drought-sensitive and drought-resistant qingkes, a class of C-glycosylflavonoids are simultaneously regulated by a UDP-glucosyltransferase gene. Overall, we performed GWAS for sensitivity and widely targeted metabolites during drought stress in qingke for the first time, which provides new insights into the response mechanism of plant drought stress and drought resistance breeding.</p

    Table_8_Genetic architecture of inducible and constitutive metabolic profile related to drought resistance in qingke (Tibetan hulless barley).xlsx

    No full text
    Qingke (Tibetan hulless barley, Hordeum vulgare L. var. nudum) is the primary food crop on the Tibet Plateau, the long-term drought and other harsh environments makes qingke an important resource for the study of abiotic resistance. Here, we evaluated the drought sensitivity of 246 qingke varieties. Genome-wide association studies (GWAS) found that root-specific expressed gene CYP84 may be involved in the regulation of drought resistance. Based on widely targeted metabolic profiling, we identified 2,769 metabolites in qingke leaves, of which 302 were significantly changed in response to drought stress, including 4-aminobutyric acid (GABA), proline, sucrose and raffinose. Unexpectedly, these drought-induced metabolites changed more violently in drought-sensitive qingkes, while the constitutive metabolites that had little response to drought stress, such as C-glycosylflavonoids and some amino acids, accumulated excessively in drought-resistant qingkes. Combined with metabolite-based genome-wide association study (mGWAS), a total of 1,006 metabolites under optimal condition and 1,031 metabolites under mild drought stress had significant associated loci. As a marker metabolite induced by drought stress, raffinose was significantly associated with two conservatively adjacent α-galactosidase genes, qRT-PCR suggests that these two genes may jointly regulate the raffinose content in qingke. Besides, as constituent metabolites with stable differences between drought-sensitive and drought-resistant qingkes, a class of C-glycosylflavonoids are simultaneously regulated by a UDP-glucosyltransferase gene. Overall, we performed GWAS for sensitivity and widely targeted metabolites during drought stress in qingke for the first time, which provides new insights into the response mechanism of plant drought stress and drought resistance breeding.</p

    Table_14_Genetic architecture of inducible and constitutive metabolic profile related to drought resistance in qingke (Tibetan hulless barley).xlsx

    No full text
    Qingke (Tibetan hulless barley, Hordeum vulgare L. var. nudum) is the primary food crop on the Tibet Plateau, the long-term drought and other harsh environments makes qingke an important resource for the study of abiotic resistance. Here, we evaluated the drought sensitivity of 246 qingke varieties. Genome-wide association studies (GWAS) found that root-specific expressed gene CYP84 may be involved in the regulation of drought resistance. Based on widely targeted metabolic profiling, we identified 2,769 metabolites in qingke leaves, of which 302 were significantly changed in response to drought stress, including 4-aminobutyric acid (GABA), proline, sucrose and raffinose. Unexpectedly, these drought-induced metabolites changed more violently in drought-sensitive qingkes, while the constitutive metabolites that had little response to drought stress, such as C-glycosylflavonoids and some amino acids, accumulated excessively in drought-resistant qingkes. Combined with metabolite-based genome-wide association study (mGWAS), a total of 1,006 metabolites under optimal condition and 1,031 metabolites under mild drought stress had significant associated loci. As a marker metabolite induced by drought stress, raffinose was significantly associated with two conservatively adjacent α-galactosidase genes, qRT-PCR suggests that these two genes may jointly regulate the raffinose content in qingke. Besides, as constituent metabolites with stable differences between drought-sensitive and drought-resistant qingkes, a class of C-glycosylflavonoids are simultaneously regulated by a UDP-glucosyltransferase gene. Overall, we performed GWAS for sensitivity and widely targeted metabolites during drought stress in qingke for the first time, which provides new insights into the response mechanism of plant drought stress and drought resistance breeding.</p
    corecore