3 research outputs found

    Boronate Affinity Fluorescent Nanoparticles for Förster Resonance Energy Transfer Inhibition Assay of cis-Diol Biomolecules

    No full text
    Förster resonance energy transfer (FRET) has been essential for many applications, in which an appropriate donor–acceptor pair is the key. Traditional dye-to-dye combinations remain the working horses but are rather nonspecifically susceptive to environmental factors (such as ionic strength, pH, oxygen, etc.). Besides, to obtain desired selectivity, functionalization of the donor or acceptor is essential but usually tedious. Herein, we present fluorescent poly­(<i>m</i>-aminophenylboronic acid) nanoparticles (poly­(mAPBA) NPs) synthesized via a simple procedure and demonstrate a FRET scheme with suppressed environmental effects for the selective sensing of cis-diol biomolecules. The NPs exhibited stable fluorescence properties, resistance to environmental factors, and a Förster distance comparable size, making them ideal donor for FRET applications. By using poly­(mAPBA) NPs and adenosine 5′-monophosphate modified graphene oxide (AMP-GO) as a donor and an acceptor, respectively, an environmental effects-suppressed boronate affinity-mediated FRET system was established. The fluorescence of poly­(mAPBA) NPs was quenched by AMP-GO while it was restored when a competing cis-diol compounds was present. The FRET system exhibited excellent selectivity and improved sensitivity toward cis-diol compounds. Quantitative inhibition assay of glucose in human serum was demonstrated. As many cis-diol compounds such as sugars and glycoproteins are biologically and clinically significant, the FRET scheme presented herein could find more promising applications

    Rh<sub>2</sub>(Ph<sub>3</sub>COO)<sub>3</sub>(OAc)/Chiral Phosphoric Acid Cocatalyzed <i>N</i>‑Alkyl Imines-Involved Multicomponent Reactions Yielding <i>N</i>‑(Anthrancen-9-ylmethyl) Isoserines as Drug Intermediates

    No full text
    N-(Anthrancen-9-ylmethyl) isoserines are useful drug intermediates but short for efficient synthesis. We herein report the synthesis of N-(anthrancen-9-ylmethyl) isoserines via a Rh2(Ph3COO)3(OAc) and chiral phosphoric acid (CPA) synergistically catalyzed multicomponent reaction (MCR) of N-alkyl imines, alcohols, and diazoesters. The method representing the first example of N-alkyl imines-involved MCR is featured by high atom-economy, high diastereo- and enantioselectivities, and broad substrate scope. DFT calculations on the mechanism of the MCR reveals that the hydrophobic interactions and π–π stackings between N-(anthrancen-9-ylmethyl) imines and Rh2(Ph3COO)3(OAc)/CPA cocatalyst is essential to the reactivity and stereocontrol. The synthetic applications of the MCR products include the semisynthesis of paclitaxel, its alkyne-tagged derivative, and β-lactam as an anticancer agent overcoming paclitaxel-resistance. We expect this work to shed light on the development of new N-alkyl imines-involved reactions and on the synthesis of drugs with isoserines as intermediates

    Hybrid Approach Combining Boronate Affinity Magnetic Nanoparticles and Capillary Electrophoresis for Efficient Selection of Glycoprotein-Binding Aptamers

    No full text
    Capillary electrophoresis (CE) and magnetic beads have been widely used for the selection of aptamers owing to their efficient separation ability. However, these methods alone are associated with some apparent drawbacks. CE suffers from small injection volumes and thereby only a limited amount of aptamer can be collected at each round. While the magnetic beads approach is often associated with tedious procedure and nonspecific binding. Herein we present a hybrid approach that combines the above two classical aptamer selection methods to overcome the drawbacks associated with these methods alone. In this hybrid method, one single round selection by boronate affinity magnetic nanoparticles (BA-MNPs) was first performed and then followed by a CE selection of a few rounds. The BA-MNPs-based selection eliminated nonbinding sequences, enriching effective sequences in the nucleic acid library. While the CE selection, which was carried out in free solutions, eliminated steric hindrance effects in subsequent selection. Two typical glycoproteins, Ribonuclease B (RNase B) and alkaline phosphatase (ALP), were used as targets. This hybrid method allowed for efficient selection of glycoprotein-binding aptamers within 4 rounds (1 round of BA-MNPs-based selection and 3 rounds of CE selection) and the dissociation constants reached 10<sup>–8</sup> M level. The hybrid selection approach exhibited several significant advantages, including speed, affinity, specificity, and avoiding negative selection. Using one of the selected ALP-binding aptamers as an affinity ligand, feasibility for real application of the selected aptamers was demonstrated through constructing an improved enzyme activity assay
    corecore