21 research outputs found

    Association of Polymorphisms of the Matrix Metalloproteinase 9 Gene with Ischaemic Stroke in a Southern Chinese Population

    Get PDF
    Background/Aims: Matrix metalloproteinase 9 (MMP9), a potent endopeptidase degrading extracellular matrix, plays a pivotal role in the pathogenesis of ischaemic stroke (IS). The present study was undertaken to determine the association of MMP9 gene polymorphisms and the risk of IS in a southern Chinese population. Methods: A cohort of 1274 patients and 1258 age-matched healthy controls were genotyped to detect the four MMP9 polymorphisms (rs17156, rs3787268, rs3918241 and rs3918242) using SNaPshot. Results: Our study demonstrated a significant difference in the genotype and allele frequencies of the MMP9 rs3918242 polymorphism between the IS patients and the controls (P = 0.012 for the genotype and P = 0.0092 for the allele). Stratification by smoking status showed statistically significant differences in the frequency and allele of the rs3918242 polymorphism between IS patients and the controls (P = 0.0052 for the genotype and P = 0.0019 for the allele). Further stratification by IS subtypes revealed that the presence of the T allele of the MMP9 rs3918242 polymorphism confers a higher risk of the large artery atherosclerosis subtype of IS (P = 0.017). Moreover, IS patients with the rs3918242 T allele of MMP9 presented with increased serum MMP9 production, and this increase was more significant in smokers with IS (P = 0.022). Patients carrying the variant T allele of the MMP9 rs3918242 polymorphism exhibited significantly higher infarct volumes than those with the major CC genotype (P = 0.036). Conclusion: Our study provides preliminary evidence that the MMP9 rs3918242 polymorphism is linked to a higher risk of IS, confirming the role of MMP9 in the pathophysiology of IS, with potentially important therapeutic implications

    Amassing the Security: An Enhanced Authentication Protocol for Drone Communications over 5G Networks

    No full text
    At present, the great progress made by the Internet of Things (IoT) has led to the emergence of the Internet of Drones (IoD). IoD is an extension of the IoT, which is used to control and manipulate drones entering the flight area. Now, the fifth-generation mobile communication technology (5G) has been introduced into the IoD; it can transmit ultra-high-definition data, make the drones respond to ground commands faster and provide more secure data transmission in the IoD. However, because the drones communicate on the public channel, they are vulnerable to security attacks; furthermore, drones can be easily captured by attackers. Therefore, to solve the security problem of the IoD, Hussain et al. recently proposed a three-party authentication protocol in an IoD environment. The protocol is applied to the supervision of smart cities and collects real-time data about the smart city through drones. However, we find that the protocol is vulnerable to drone capture attacks, privileged insider attacks and session key disclosure attacks. Based on the security of the above protocol, we designed an improved protocol. Through informal analysis, we proved that the protocol could resist known security attacks. In addition, we used the real-oracle random model and ProVerif tool to prove the security and effectiveness of the protocol. Finally, through comparison, we conclude that the protocol is secure compared with recent protocols

    Amassing the Security: An Enhanced Authentication Protocol for Drone Communications over 5G Networks

    No full text
    At present, the great progress made by the Internet of Things (IoT) has led to the emergence of the Internet of Drones (IoD). IoD is an extension of the IoT, which is used to control and manipulate drones entering the flight area. Now, the fifth-generation mobile communication technology (5G) has been introduced into the IoD; it can transmit ultra-high-definition data, make the drones respond to ground commands faster and provide more secure data transmission in the IoD. However, because the drones communicate on the public channel, they are vulnerable to security attacks; furthermore, drones can be easily captured by attackers. Therefore, to solve the security problem of the IoD, Hussain et al. recently proposed a three-party authentication protocol in an IoD environment. The protocol is applied to the supervision of smart cities and collects real-time data about the smart city through drones. However, we find that the protocol is vulnerable to drone capture attacks, privileged insider attacks and session key disclosure attacks. Based on the security of the above protocol, we designed an improved protocol. Through informal analysis, we proved that the protocol could resist known security attacks. In addition, we used the real-oracle random model and ProVerif tool to prove the security and effectiveness of the protocol. Finally, through comparison, we conclude that the protocol is secure compared with recent protocols

    SGXAP: SGX-Based Authentication Protocol in IoV-Enabled Fog Computing

    No full text
    With the maturity and popularization of the Internet of Things, we saw the emergence of the Internet of Vehicles. This collects and processes real-time traffic information, alleviates traffic congestion, and realizes intelligent transportation. However, sensitive information, such as real-time driving data of vehicles, are transmitted on public channels, which are easily to steal and manipulate for attackers. In addition, vehicle communications are vulnerable to malicious attacks. Therefore, it is essential to design secure and efficient protocols. Many studies have adopted asymmetric cryptosystems and fog computing to in this environment, but most of them do not reflect the advantages of fog nodes, which share the computational burden of cloud servers. Therefore, it is challenging to design a protocol that effectively uses fog nodes. In this paper, we design an authentication protocol based on a symmetric encryption algorithm and fog computing in the Internet of Vehicles. In this protocol, we first propose a four-layer architecture that significantly reduces the computational burden of cloud servers. To resist several well-known attacks, we also apply Intel software guard extensions to our protocol. This is because it can resist privileged insider attacks. We prove the security of the proposed protocol through the Real-Or-Random model and informal analysis. We also compare the performance of the proposed protocol with recent protocols. The results show better security and a lower computational cost

    Degradation of Sodium Acetate by Catalytic Ozonation Coupled with a Mn-Functionalized Fly Ash: Reaction Parameters and Mechanism

    No full text
    Supported ozone catalysts usually take alumina, activated carbon, mesoporous molecular sieve, graphene, etc. as the carrier for loading metal oxide via the impregnation method, sol–gel method and precipitation method. In this work, a Mn-modified fly ash catalyst was synthesized to reduce the consumption and high unit price of traditional catalyst carriers like alumina. As a solid waste discharged from coal-fired power plants fueled by coal, fly ash also has porous spherical fine particles with constant surface area and activity, abd is expected to be applied as the main component in the synthesis of ozone catalyst. After the pretreatment process and modification with MnOx, the obtained Mn-modified fly ash exhibited stronger specific surface area and porosity combined with considerable ozone catalytic performance. We used sodium acetate as the contaminant probe, which is difficult to directly decompose with ozone as the end product of ozone oxidation, to evaluate the performance of this Mn-modified fly. It was found that ozone molecules can be transformed to generate ·OH, ·O2− and 1O2 for the further oxidation of sodium acetate. The oxygen vacancy produced via Mn modification plays a crucial role in the adsorption and excitation of ozone. This work demonstrates that fly ash, as an industrial waste, can be synthesized as a potential industrial catalyst with stable physical and chemical properties, a simple preparation method and low costs

    SAKAP: SGX-Based Authentication Key Agreement Protocol in IoT-Enabled Cloud Computing

    No full text
    With the rapid development of the Internet, Internet of Things (IoT) technology is widely used in people’s daily lives. As the number of IoT devices increases, the amount of data to be processed also increases. The emergence of cloud computing can process the data of IoT devices in a timely manner, and it provides robust storage and computing capabilities to facilitate data resource sharing. Since wireless communication networks are unstable and open, it is easy for attackers to eavesdrop, intercept, and tamper with the messages sent. In addition, authentication protocols designed for IoT-enabled cloud computing environments still face many security challenges. Therefore, to address these security issues, we propose an Intel software-guard-extensions (SGX)-based authentication key agreement protocol in an IoT-enabled cloud computing environment. The goal is to ensure data privacy and sustainable communication between the entities. Moreover, SGX can resist several well-known attacks. Finally, we show the security using the real-or-random model, ProVerif, and informal analysis. We also compare the security and performance of the proposed protocol with existing protocols. The comparison results show that our proposed protocol reduces the communication cost by 7.07% compared to the best one among the current protocols and ensures sufficient security

    Safety and feasibility analysis of rapid daratumumab infusion in Chinese patients with multiple myeloma

    No full text
    Abstract Background With the increasing use of daratumumab (DARA)‐containing regimens for multiple myeloma (MM) patients in China, the standard infusion time of DARA is long, with the potential for infusion‐related reactions (IRRs) and increased hospitalization and use of resources. Shortening the duration of DARA infusion helps to optimize the hospital stay and enhance the patient treatment experience. The current, commonly used 90‐min rapid DARA infusion regimen may not be applicable to Chinese MM patients, and therefore, we explored a new 110‐min rapid DARA infusion regimen aimed at reducing the treatment burden on patients to guarantee therapeutic safety. Methods MM inpatients treated with the DARA regimen were divided into two groups according to the number of times the DARA regimen was used: a standard infusion regimen for patients treated with the first two doses of DARA and a 110‐min rapid infusion regimen for patients treated with more than two doses of DARA. Anti‐allergy medications were routinely administered prior to the start of DARA infusion, patient consent, and authorization was obtained for all treatments, and statistical evaluation of the results was conducted via descriptive analyses, one‐way ANOVA and chi‐square tests. Results A total of 129 patients were included in this study: 68 in the standard infusion group, with 121 DARA infusions, and 129 in the rapid infusion group (patients who participated in the standard infusion subsequently participated in the rapid infusion), with 738 DARA infusions. The incidence of IRRs was 27.27% (36/121) in the standard infusion group and 1.35% (10/738) in the rapid infusion group, which were significantly different (p  0.05). The mean infusion time after the occurrence of IRRs was also shorter in the rapid infusion group than in the standard infusion group (F = 24.781, p < 0.001). Conclusion The 110‐min rapid infusion DARA regimen is feasible and safe for use in Chinese MM patients

    NMN rescued the cytoskeletal damage of aged porcine oocytes.

    No full text
    Representative confocal images (A) and fluorescence intensity (B) of actin at 0 h, AGED-24 h, AGED+NMN-24 h, AGED-48 h and AGED+NMN-48 h oocytes. *p < 0.05 indicated significant differences. Scale bars represented 50 μm.</p
    corecore