5,117 research outputs found

    Associated production of the top-pions and single top at hadron colliders

    Full text link
    In the context of topcolor assisted technicolor(TC2) models, we study the production of the top-pions πt0,±\pi_{t}^{0,\pm} with single top quark via the processes ppˉ→tπt0+Xp\bar{p} \to t\pi_{t}^{0}+X and ppˉ→tπt±+Xp\bar{p} \to t\pi_{t}^{\pm}+X, and discuss the possibility of detecting these new particles at Tevatron and LHC. We find that it is very difficult to observe the signals of these particles via these processes at Tevatron, while the neutral and charged top-pions πt0\pi_{t}^{0} and πt±\pi_{t}^{\pm} can be detecting via considering the same sign top pair ttcˉtt\bar{c} event and the ttbˉtt\bar{b} (or ttˉbt\bar{t}b) event at LHC, respectively.Comment: latex files,14 pages, 7 figures. Accepted for publication in Phys. Rev.

    Resummation prediction on top quark transverse momentum distribution at large pT

    Full text link
    We study the factorization and resummation of t-channel top quark transverse momentum distribution at large pT in the SM at both the Tevatron and the LHC with soft-collinear effective theory. The cross section in the threshold region can be factorized into a convolution of hard, jet and soft functions. In particular, we first calculate the NLO soft functions for this process, and give a RG improved cross section by evolving the different functions to a common scale. Our results show that the resummation effects increase the NLO results by about 9%-13% and 4%-9% when the top quark pT is larger than 50 and 70 GeV at the Tevatron and the 8 TeV LHC, respectively. Also, we discuss the scale independence of the cross section analytically, and show how to choose the proper scales at which the perturbative expansion can converge fast.Comment: 32 pages, 10 figures, version published in Phys.Rev.

    Determinations of form factors for semileptonic D→KD\rightarrow K decays and leptoquark constraints

    Full text link
    By analyzing all existing measurements for D→Kℓ+νℓ D\rightarrow K \ell^+ \nu_{\ell} ( ℓ=e, μ\ell=e,\ \mu ) decays, we find that the determinations of both the vector form factor f+K(q2)f_+^K(q^2) and scalar form factor f0K(q2)f_0^K(q^2) for semileptonic D→KD\rightarrow K decays from these measurements are feasible. By taking the parameterization of the one order series expansion of the f+K(q2)f_+^K(q^2) and f0K(q2)f_0^K(q^2), f+K(0)∣Vcs∣f_+^K(0)|V_{cs}| is determined to be 0.7182±0.00290.7182\pm0.0029, and the shape parameters of f+K(q2)f_+^K(q^2) and f0K(q2)f_0^K(q^2) are r+1=−2.16±0.007r_{+1}=-2.16\pm0.007 and r01=0.89±3.27r_{01}=0.89\pm3.27, respectively. Combining with the average f+K(0)f_+^K(0) of Nf=2+1N_f=2+1 and Nf=2+1+1N_f=2+1+1 lattice calculaltion, the ∣Vcs∣|V_{cs}| is extracted to be 0.964±0.004±0.0190.964\pm0.004\pm0.019 where the first error is experimental and the second theoretical. Alternatively, the f+K(0)f_+^K(0) is extracted to be 0.7377±0.003±0.0000.7377\pm0.003\pm0.000 by taking the ∣Vcs∣|V_{cs}| as the value from the global fit with the unitarity constraint of the CKM matrix. Moreover, using the obtained form factors by Nf=2+1+1N_f=2+1+1 lattice QCD, we re-analyze these measurements in the context of new physics. Constraints on scalar leptoquarks are obtained for different final states of semileptonic D→KD \rightarrow K decays

    Robust signatures of quantum radiation reaction in focused ultrashort laser pulses

    Get PDF
    Radiation reaction effects in the interaction of an electron bunch with a superstrong focused ultrashort laser pulse are investigated in the quantum radiation dominated regime. The angle-resolved Compton scattering spectra are calculated in laser pulses of variable duration using a semi-classical description for the radiation dominated dynamics and a full quantum treatment for the emitted radiation. In dependence of the laser pulse duration we find signatures of quantum radiation reaction in the radiation spectra, which are characteristic for the focused laser beam and visible in the qualitative behaviour of both the angular spread and the spectral bandwidth of the radiation spectra. The signatures are robust with respect to the variation of the electron and laser beam parameters in a large range. They fully differ qualitatively from those in the classical radiation reaction regime and are measurable with presently available laser technology

    Ion Acceleration by Short Chirped Laser Pulses

    Full text link
    Direct laser acceleration of ions by short frequency-chirped laser pulses is investigated theoretically. We demonstrate that intense beams of ions with a kinetic energy broadening of about 1 % can be generated. The chirping of the laser pulse allows the particles to gain kinetic energies of hundreds of MeVs, which is required for hadron cancer therapy, from pulses of energies of the order of 100 J. It is shown that few-cycle chirped pulses can accelerate ions more efficiently than long ones, i.e. higher ion kinetic energies are reached with the same amount of total electromagnetic pulse energy

    Single-shot determination of spin-polarization for ultrarelativistic electron beams via nonlinear Compton scattering

    Full text link
    Impacts of spin-polarization of an ultrarelativistic electron beam head-on colliding with a strong laser pulse on emitted photon spectra and electron dynamics have been investigated in the quantum radiation regime. We simulate photon emissions quantum mechanically and electron dynamics semiclassically via taking spin-resolved radiation probabilities in the local constant field approximation. A small ellipticity of the laser field brings about an asymmetry in angle-resolved photon spectrum, which sensitively relies on the polarization of the electron beam. The asymmetry is particularly significant in high-energy photon spectra, and is employed for the polarization detection of a high-energy electron beam with extraordinary precision, e.g., better than 0.3\% for a few-GeV electron beam at a density of the scale of 101610^{16} cm−3^{-3} with currently available strong laser fields. This method demonstrates for the first time a way of single-shot determination of polarization for ultrarelativistic electron beams via nonlinear Compton scattering. A similar method based on the asymmetry in the electron momentum distribution after the interaction due to spin-dependent radiation reaction is proposed as well
    • …
    corecore