39 research outputs found

    The Pediatric Cell Atlas: defining the growth phase of human development at single-cell resolution

    Get PDF
    Single-cell gene expression analyses of mammalian tissues have uncovered profound stage-specific molecular regulatory phenomena that have changed the understanding of unique cell types and signaling pathways critical for lineage determination, morphogenesis, and growth. We discuss here the case for a Pediatric Cell Atlas as part of the Human Cell Atlas consortium to provide single-cell profiles and spatial characterization of gene expression across human tissues and organs. Such data will complement adult and developmentally focused HCA projects to provide a rich cytogenomic framework for understanding not only pediatric health and disease but also environmental and genetic impacts across the human lifespan

    Safe and efficient 2D molybdenum disulfide platform for cooperative imaging-guided photothermal-selective chemotherapy: A preclinical study

    No full text
    Introduction: The striking imbalance between the ever-increasing amount of nanomedicines and low clinical translation of products has become the focus of intense debate. For clinical translation, the critical issue is to select the appropriate agents and combination regimen for targeted diseases, not to prepare increasingly complex nanoplatforms.Objectives: A safe and efficient platform, a-tocopheryl succinate (a-TOS) married 2D molybdenum disulfide, was devised by a facile method and applied for cooperative imaging-guided photothermal-selective chemotherapy of ovarian carcinoma.Methods: A novel platform of PEGylated a-TOS and folic acid (FA) conjugated 2D MoS2 nanoflakes was fabricated for the cooperative multimode computed tomography (CT)/photoacoustic (PA)/thermal imaging-guided photothermal-selective chemotherapy of ovarian carcinoma. Results: The photothermal efficiency (65.3%) of the platform under safe near-infrared irradiation is much higher than that of other photothermal materials reported elsewhere. Moreover, the covalently linked a- TOS renders platform with selective chemotherapy for cancer cells. Remarkably, with these excellent properties, the platform can be used to completely eliminate the solid tumor by safe photothermal therapy, and then kill the residual cancer cells by selective chemotherapy to prevent tumor recurrence. More significantly, barely side effects occur in the whole treatment process. The excellent efficacy and safety benefits in vivo lead to the prominent survival rate of 100% over 91 days. Conclusion: The safe and efficient platform might be a candidate of clinical nanomedicines for multimode theranostics. This study demonstrates an innovative thought in precise nanomedicine regarding the design of next generation of cancer theranostic protocol for potential clinical practice.(c) 2022 The Authors. Published by Elsevier B.V. on behalf of Cairo University. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

    Bone marrow mesenchymal stem cell transplantation combined with perindopril treatment attenuates infarction remodelling in a rat model of acute myocardial infarction

    No full text
    Objective: This study was performed to evaluate whether implantation of mesenchymal stem cell (MSC) would reduce left ventricular remodelling from the molecular mechanisms compared with angiotensin-converting enzyme inhibitors (ACEIs) perindopril into ischemic myocardium after acute myocardial infarction. Methods: Forty rats were divided into four groups: control, MSC, ACEI, MSC+ACEI groups. Bone marrow stem cell derived rat was injected immediately into a zone made ischemic by coronary artery ligation in MSC group and MSC+ACEI group. Phosphate-buffered saline (PBS) was injected into control group. Perindopril was administered p.o. to ACEI group and MSC+ACEI group. Six weeks after implantation, the rats were killed and heart sample was collected. Fibrillar collagen was observed by meliorative Masson’s trichome stain. Western Blotting was employed to evaluate the protein expression of matrix metalloproteinase (MMP)-2, matrix metalloproteinase (MMP)-9 in infarction zone. The transcriptional level of MMP2, MMP9 and tissue inhibitor of matrix metalloproteinase (TIMP)-1 in infarction area was detected by reverse transcriptase PCR (RT-PCR) analysis. Results: The fibrillar collagen area, the protein expression of MMP2, MMP9 and the transcriptional level of MMP2, MMP9 mRNA in infarction zone reduced in MSC group, ACEI group, and MSC+ACEI group. No significant difference was detected in the expression of TIMP1 mRNA among the 4 groups. Conclusion: Both MSC and ACEI could reduce infarction remodelling by altering collagen metabolism
    corecore