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Single-cell gene expression analyses of mammalian tissues have uncovered profound stage-specific molec-
ular regulatory phenomena that have changed the understanding of unique cell types and signaling pathways
critical for lineage determination, morphogenesis, and growth. We discuss here the case for a Pediatric Cell
Atlas as part of the Human Cell Atlas consortium to provide single-cell profiles and spatial characterization of
gene expression across human tissues and organs. Such data will complement adult and developmentally
focused HCA projects to provide a rich cytogenomic framework for understanding not only pediatric health
and disease but also environmental and genetic impacts across the human lifespan.
Introduction
In recent years, there have been dramatic advances in technol-

ogies to profile molecules in single cells. Efforts to profile single
10 Developmental Cell 49, April 8, 2019 ª 2019 Elsevier Inc.
This is an open access article under the CC BY license (http://creative
cells were first introduced nearly three decades ago, pioneered

in the 1990s by groups headed by James Eberwine (Van Gelder

et al., 1990; Eberwine et al., 1992) and Norman Iscove (Brady
commons.org/licenses/by/4.0/).
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et al., 1990). In the past few years, the field has been transformed

by a series of advances that combine next-generation

sequencing and massively parallel processing of single cells,

first with single-cell RNA sequencing (RNA-seq) (Macosko

et al., 2015; Klein et al., 2015; Gierahn et al., 2017), chromatin or-
ganization (Buenrostro et al., 2015), and sequence variation

(Yuan et al., 2017) as well as in combination for multimodal read-

outs (Stuart and Satija, 2019). Other experimental technologies

under development in proteomics (Specht, and Slavov, 2018),

chromosomal conformation (Lando et al., 2018), dynamic cell
Developmental Cell 49, April 8, 2019 11
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Figure 1. Compiling a Pediatric Single-Cell
Atlas
A pediatric single-cell atlas can consist of multi-
omics data from hundreds to many thousands of
cells isolated from multiple tissues from normally
developing and disease-affected individuals. Single
cells can be grouped into cell types that have unique
molecular profiles representing primary programs
for that cell type as well as sub-state-specific addi-
tional programming. The utility of a single-cell atlas is
the possibility to map molecular signatures driving
developmental, physiological, and pathological
processes. Thus, single cell-based signatures can
reveal the roles and responses of multiple cell line-
ages that dictate a given organ’s and/or tissue’s
collective biology.
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imaging (Fermie et al., 2018), and lineage tracing (Woodworth

et al., 2017) present great promise for studying transient pro-

cesses in single cells that complement longstanding histological

characterization methods. These technologies can provide

views into cellular and tissue physiology and pathology that

would be only apparent at single-cell resolution (Figure 1), with

exceptional potential for producing transformative insights

across fields such as developmental biology, genetics, disease

pathology, and evolutionary biology (Baslan and Hicks, 2017;

Marioni and Arendt, 2017; Behjati et al., 2018).

Given these advances, whole-organism tissue maps at the

single-cell level are now feasible (Cao et al., 2017; Sebé-Pedrós

et al., 2018; Plass et al., 2018; Tabula Muris Consortium et al.,

2018). A case for the creation of a comprehensive human cell

atlas, including the scientific history, technologies, challenges,

and promise for a project of that scale has been recently well

described (Regev et al., 2017; Regev et al., 2018). The construc-

tion of the Human Cell Atlas (HCA), which focuses on single-cell

profiles and spatial characterization of all adult, pediatric, and

human developmental tissues, systems, and organs, is now un-

derway, and is organized under a global ‘‘coalition of the willing’’

where researchers will generate data under different funding

sources to be deposited into a central data coordination platform

(Rozenblatt-Rosen et al., 2017; Regev et al., 2018). Across the

world, multiple initiatives will contribute to the creation of a hu-

man cell atlas, as well as to applications in specific disease

areas. For example, the National Institutes of Health (NIH) sup-

ports programs such as the Human Biomolecular Atlas Program

(HuBMAP), the Human Tumor Atlas Network (HTAN), and the

BRAIN Initiative Cell Census Network programs. However, while

the Pediatric Cell Atlas (PCA) is a cornerstone of the full HCA

(Regev et al., 2018), with few exceptions (INSERM, 2018;

MRC, 2018; LungMap, 2019) to datemost initiatives do not focus

on normal pediatric tissues.

The Case for a Pediatric Cell Atlas
Support for research on the health of children still proportionally

lags behind that for adults, including in funding from the NIH (Git-

terman et al., 2018a, 2018b). The inevitable scientific advances

driven by the HCA are expected to profoundly influence transla-

tional and precision medicine research (Shalek and Benson,

2017). Likewise, developmental atlases will offer new insight
12 Developmental Cell 49, April 8, 2019
into the unique molecular and cellular processes operating dur-

ing embryonic and fetal stages (Behjati et al., 2018). However,

without a systematic inclusion of children in the current atlassing

endeavors, advancements in pediatric precision medicine and

therapeutic development will continue to fall behind. To also

secure these breakthrough discoveries for children, we propose

a longitudinal pediatric component within the HCA consortium, a

PCA. The plan for a PCAwas originally outlined in theHumanCell

Atlas White Paper (Regev et al., 2018) to represent a distributed

and interdisciplinary research effort into studying the unique

biology of children in the context of child health and human

development (Figure 2). We expect the data generated from

healthy tissues for a PCA would help to directly address many

important questions in biology and medicine, some of which

we discuss below.

How Do Cell-Specific Developmental Programs Vary

over the Human Lifespan?

Embryonic, fetal, juvenile, adolescent, and adult tissues have

unique classes of gene expression and developmental programs

(Ranzoni andCvejic, 2018). This iswell demonstrated in theFunc-

tional Annotation of the Mammalian Genome (FANTOM5) collec-

tion, which has utilized CAGE (Cap Analysis of Gene Expression)

sequencing fromall major organs, primary cell types, and 30 time

courses of cellular differentiation (Lizio et al., 2015). It is believed

that disruptions to developmental programs operating during

fetal and postnatal growth may strongly influence health later in

life, especially in metabolic, respiratory, and cardiovascular sys-

tems (Barker, 2004; Hanson, andGluckman, 2014; Visentin et al.,

2014), but it is not yet clear how these effects carry forward in tis-

sues from early development to adulthood. Epigenetic patterns

differ between stem-like and differentiated cell types, but it is un-

clear how lineage-specific and somatic stem cells are altered

during postnatal maturation, aging, and as a function of environ-

mental exposures (Meissner et al., 2008). Furthermore, despite

technological advancements inmapping epigenetic landscapes,

the epigenetic factors that drive tissue maturation and aging

remain largely undefined (Todhunter et al., 2018).

Other open questions include how stage-specific differences

in healthy tissues vary by internal and external factors, such as

growth factor signaling, or how nutritional and environmental

factors may impact regulatory mechanisms. In Figure 3, we

show how a stage-specific emphasis on single-cell healthy



Figure 2. Potential Applications for a PCA
The PCA has the potential to map and illuminate the cellular basis of normal and abnormal development, cell- and organ-level differentiation, and compensatory
and causal processes of disease.
(A) Healthy children are frequently in a global state of growth activation compared to adults through the effects of growth factors, leading to profound impacts on
gene expression and cell and tissue interactions, especially in the context of perturbations due to genetics, acquired somatic mutations, environment, infectious
disease, and pharmacologics.
(B) All of the outputs of a pediatric single-cell atlas are interrelated to provide a holistic outlook on how cells and tissues interact, differentiate, and function with
each other in times of normal versus disease states.
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tissue atlas data can be used to derive novel modules of differen-

tially expressed genes, revealing new insights into pathways and

networks of fundamental importance that distinguish between

prenatal, postnatal, and adult-stage differentiated neurons. As

further shown in Figure 4, even a simple comparative re-analysis

of late fetal-versus-adult neurons using single-cell transcriptome

data (Darmanis et al., 2015) reveals completely unique gene sig-

natures that are deeply enriched for biological processes and

networks whose dysfunction leads to human nervous system

developmental disorders (full data access at https://toppcell.

cchmc.org/). We present these results to show the power of

this approach for any developing system.

What Cell Populations Are Present in and Distinguish

Pediatric Tissues?

For the largemajority of healthypediatric tissues, thereexists little

or no understanding of how cellular processes affect the course

of development andmaturation, or howpediatric cell populations

contrast with those from adults. Signaling, transcriptional, and

epigenetic factors are believed to act differently in children’s tis-

sues leading to a global state of growth-guiding development

(Stevens et al., 2013), while most adult tissues are believed to

be quiescent with respect to growth, and replication serves to

maintain established tissue architecture (Clevers and Watt,

2018). As a consequence, the cell types and their molecular

states contributing to tissue growth in children might well differ

from those during homeostatic cell renewal that serves to main-

tain a tissue in adult life, though specific concepts of ‘‘cell type’’

and ‘‘cell state’’ still require rigorous scientific definition (Trapnell,

2015) and ontological classification, such as that found in theCell

Ontology (Meehan et al., 2011; Osumi-Sutherland, 2017). Signif-

icant differences in cell populations between pediatric and adult

tissues have been observed, for instance, in bonemarrow (Chou-

merianou et al., 2010), but it is unclear if the observed differences
are a result of specific developmental cell states, unique pediatric

or adult cell types, or differences in tissue distribution or propor-

tion of cell populations, all of which may vary in tissues by age,

sex, genetics, or developmental stage. Cellular heterogeneity in

pediatric tissue cell populations may also contribute to the regu-

lation of growth while maintaining organ function. Regulatory

control may be due to changes in inter-cellular variability of

gene expression for key pathways or due to the action of rare

cell subpopulations that have not yet been discovered (Hase-

gawa et al., 2015), both of which would be impossible to resolve

with ensemble data generated from bulk tissue.

How Is Pediatric Physiology Distinguished in Health and

Disease?

The mantra that ‘‘children are not just small adults’’ is evident

from critical differences in pediatric pharmacology and physi-

ology as seen by responses to therapeutic interventions and

by treatment outcomes. These differences are not well under-

stood at the tissue level (Fernandez et al., 2011). Age-dependent

responses to anesthesia and medications (Batchelor and Mar-

riott, 2015; Andropoulos, 2018), environmental exposures

(Wright, 2017), traumatic injuries (Luerssen et al.,1988; Resch

et al., 2019), or surgical outcomes (Imura et al., 2001) have

been observed, but the reasons for these differences are still un-

clear. Childhood diseases also have age-dependent symptoms,

prognoses, and outcomes (Wheeler et al., 2011) even when

stratified for key clinical variables, possibly due to tissue devel-

opmental composition at the time of dysfunction (Mann et al.,

2010). Since many childhood-onset diseases become lifelong,

non-communicable chronic diseases, it is key to improve our un-

derstanding of disease inception in early childhood. Undetected

disorders in neonates, such as sudden infant death syndrome,

are restricted to a relatively small postnatal period during which

organs are undergoing rapidmaturation, and these disorders are
Developmental Cell 49, April 8, 2019 13

https://toppcell.cchmc.org/
https://toppcell.cchmc.org/


Figure 3. Example of Data Reuse When Datasets Are Analyzed from the Perspective of Building the PCA
Reanalysis of the Human Brain Single-Cell Survey Study (Darmanis et al., 2015; NIH GEO GSE84465) yields a series of gene expression modules that exhibit the
greatest differential expression between cell classes, subclasses, and stages. The heatmap shows the top 200 differentially expressed genes per each cell type,
subtype, and stage (log2(TPM+1)) and highlights the the major signatures of fetal and postnatal neurons while contrasting the lack of representation of mature
differentiated neuron subtypes (cells on the right side of heatmap; signature modules on the lower half of heatmap) in fetal neurons (middle portion of the
heatmap). Very few of the top stage-specific neuronal genes overlap (fetal neurons versus postnatal neurons) despite enrichment of similar functions with
completely different genes comprising those categories. Moreover, there are also subtle, albeit fundamental, shifts in the biological functions of the develop-
mental stage gene modules. An interactive view of this data can be seen at http://toppcell.cchmc.org/.
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likely impacted by intrauterine factors (Athanasakis et al., 2011).

There is also little known about the effects of genomic variants,

environmental effectors, or their interactions on individual popu-

lations of cells within tissues and how these effects might vary by

age to alter normal development, cellular function, or therapeutic

efficacies in children.

Applications in Research and Medicine
The PCA component of the HCA would generate fundamental

contributions to our understanding of pediatric physiology in

health and disease and to the development of precise therapeu-

tic interventions for children. Below are some of the many poten-

tial applications to research and medicine.

Provide Age-Matched Single-Cell Profiles of Non-

Diseased Tissues as Reference Maps

Single-cell surveys of bioenergetics, growth, and functional pro-

grams from typical fetal and pediatric tissues will contribute to a

greater understanding of complex diseases arising from condi-
14 Developmental Cell 49, April 8, 2019
tions such as congenital birth defects, developmental delays,

inborn errors of metabolism, or pediatric cancer. As some pedi-

atric diseases differ in presentation and outcome by age, an atlas

of cells in healthy pediatric tissues organized by developmental

age would thus be an important and broadly useful data

resource. The PCAwould promote an ‘‘age and stage’’ approach

to sample ascertainment by supporting the creation of indexes

for coordinated tissue banks and study populations among

participating groups. Data from the PCA would be useful for

comparative analyses of normal tissue data versus that from

disease and dysregulated states in pediatric tissues, including

helping to identify suitable normal controls (Zeng et al., 2019)

as well as for concurrent studies on matched adult and develop-

mental tissues within the HCA’s Biological Networks. There is

increasing excitement about the use of stem-cell-derived ‘‘orga-

noids’’ as in vitro models of human organ development and

disease (Clevers, 2016). However, these cells and tissues repre-

sent early, usually fetal, stages of development and will require

http://toppcell.cchmc.org/


Figure 4. Enrichment Analysis of the Major Signature Overexpressed in Fetal Neurons versus Those from Postnatal and Adult Human Brain
Modular analysis of data shown in Figure 3 yields functional associations (rectangles) shared by the top 200 contrasting genes (hexagons) and their links to Gene
Ontology, mouse gene knockout phenotype, or human OMIM gene-associated phenotype terms (phenotype-associated genes [yellow hexagons] which are
connected by separately colored edges per phenotype group. This example highlights the necessity of profiling fetal and pediatric cells and genes, which have
similar functions and processes compared to their adult counterparts but impact development, function, and physiology at different stages of development
through different gene and regulatory programs. It also indicates that critical genetic associations can only be fully appreciated in the context of fetal stage
neurons rather than their mature counterparts. Network analysis carried out using the ‘‘top 200 fetal quiescent neuron’’ gene-expression signature shown in
Figure 3 as analyzed using the http://toppcluster.cchmc.org/multiple-annotations biological network analysis functions to generate XGMMLoutput that was then
clustered in Cytoscape (Shannon et al., 2003).
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reference datasets based on single-cell RNA sequencing of

normal developing tissues to calibrate cellular fidelity.

Map Developmental Trajectories of Pediatric Cells and

Tissues

The PCA would make important contributions toward our under-

standing of human growth and development across the human

lifespan. ThePCAcould support generation and analyses of a vir-

tual ‘‘time course’’ ofmulti-omics data to provide insights into the

specifics of pediatric cell regulatory networks (Packer and Trap-

nell, 2018) across different developmental stages. For example,

predicted cellular trajectories in organs such as kidney during hu-

man fetal development suggest highly consistent developmental

programs in age-matched samples (Wanget al., 2018).Models of

cellular processes and their tissue locality would greatly enhance

our understanding of changing cellular composition during

normal and perturbed development. For instance, howpathways

and effectors are regulated within and across different children’s

tissues to promote healthy growth and development could be

extended to study these processes across the lifespan. Under-

standing these processes can help inform many aspects of

human biology and medicine, including wound healing, tissue

regeneration, and capacity to respond to physiological chal-

lenge. Comparisons of pediatric, adolescent, and adult single-
cell data may also provide insight into how cell types transition

from ‘‘growing’’ to ‘‘adult homeostatic’’ states.

Contribute Insights into Public Health

Many chronic diseases that affect specific tissues, such as dia-

betes, asthma, and neuropsychiatric disorders, often first man-

ifest in childhood or adolescence. Environmental exposures

during development, the so-called exposome, may have long-

term effects on children’s and adult’s health and tissue function

at the cellular level (Balshaw et al., 2017; Vineis et al., 2017),

especially during specific developmental windows (Dietert

et al., 2000). Neuroimmunologic cell and tissue responses

to lower socioeconomic status, stress, inflammation, and air

pollution may be linked to observed health disparities (Olvera

Alvarez et al., 2018). Thus, targeted studies of single cells along

with genetic, demographic, socio-economic, and exposome

data may reveal biomarkers and therapeutic opportunities to

improve health and outcomes. Nutrition during childhood can

impact adult tissue development and function in clinically rele-

vant ways (Rytter et al., 2014) and may have long-term implica-

tions for public health (Eriksson et al., 2001; van Abeelen

et al., 2012; Lelijveld et al., 2016). A lifespan epidemiological

approach to studying human health (Ben-Shlomo and Kuh,

2002) would benefit from the PCA’s contributions to the span
Developmental Cell 49, April 8, 2019 15
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of normal tissue growth and cellular function on a stage-by-

stage basis.

Increase Precision in Pediatric Drug Discovery and

Toxicology

Children’s responses to medications can differ from those of

adults because of differences in drug metabolism and differ-

ences in cellular responses to drugs (Stephenson, 2005). These

differences can cause substantial morbidity, as was the case for

children with SHH-driven medulloblastoma who received vismo-

degib and subsequently suffered from irreversible growth plate

fusions (Robinson et al., 2017). The majority of pediatric patients

who require pharmaceutical treatment receive medications that

are either not approved or incompletely labeled for pediatric use

(Ward et al., 2018). The PCA would be particularly suited to help

address these disparities. Partnerships with the pharmaceutical

and biotech industries could help accelerate pediatric drug

development by providing an index of available pediatric tissues

and specialist researchers across participating institutions.

The PCA would also provide a pediatric tissue catalog reporting

on cell composition and genomic profiles organized by cell

type and developmental age. Single-cell data itself could

increase the precision of physiologically based pharmacokinetic

modeling for pediatric systems by deeply profiling tissue meta-

bolism and unique pathways that underlie developmental

programs in key pediatric tissues such as liver, kidney, and

gut. This may yield better predictions of adverse effects and pro-

vide insight into key differences in responses in pediatric clinical

trials and effectiveness studies compared to adults (Yellepeddi

et al., 2019).

Establish Linked Platforms for a Global Pediatric

Research Network

As a biological network within the HCA, the PCA will bring

together scientists across the pediatric research community to

enable, innovate, and accelerate research in single-cell-based

pediatric health and disease, which would otherwise be infea-

sible for individual laboratories or institutions to accomplish.

Data shared among global partners through the Data Coordina-

tion Platform (DCP) for the HCA will allow for novel and flexible

context-specific exploratory re-analyses that can yield entirely

new insights on molecular patterns and mechanisms respon-

sible for system-specific and multi-system growth and develop-

ment, as shown in Figures 3 and 4. Within the HCA, the PCA

will connect with complimentary organ-, tissue-, and system-

specific biological networks to relate pediatric and adult data.

Thus, partnerships across an international network of partici-

pating children’s hospitals, pediatric-focused research centers,

biorepositories, foundations, and consortia would be able to

accelerate pediatric research by helping to connect patients

and families to research efforts, source rare tissues, integrate

and disseminate novel platforms and approaches, develop and

support common data harmonization standards, and widely

share data to empower collaborative and diverse research

teams to address pressing basic and translational science prob-

lems. An existing collaborative endeavor among three of the

largest children’s hospitals in the country, The Genomics

Research and Innovation Network (GRIN), has already devel-

oped collaborative instruments and environments for pediatric

genetic and clinical data exchange and can be useful in

designing similar instruments for the PCA (GRIN, 2019). Mem-
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bership in the PCA community is open to anyone willing to

commit to values of the HCA: transparency and open data

sharing; support of community, diversity, equity, and inclusion;

commitment to patient privacy; technology development for

preparing and analyzing pediatric samples; and dedication to

computational excellence (Regev et al., 2018). Information on

the effort is open to the community at the PCA component of

the HCA web site at http://www.humancellatlas.org/PCA and

members can register at https://www.humancellatlas.org/

joinHCA.

Expected Challenges and Timelines
Organization and Scope

Developing the PCA toward understanding human tissue growth

and development will require significant resources for profiling

and analyzing millions of cells from potentially thousands of tis-

sue samples from pediatric donors, with a focus on longitudinal

age. To ensure success, the broad scale of the endeavor out-

lined here would require contributions from diverse teams span-

ning clinical and basic research across multiple institutions,

which together enlist recruitment of samples spanning a range

of ages in many pediatric tissues. Legal, ethical, and resource

challenges would be encountered during establishment of a

PCA biological network that synergizes through collaboration,

freely and fairly shares data and best practices, and strives for

compliance reciprocity. An effective PCA, as part of the HCA,

would create new opportunities for tissue-specific sub-projects

to share and maximize resources, including expertise, work-

flows, and tools, while encouraging appropriate academic

attributions and output.

Representing PCA Data in the HCA Data Coordination

Platform

The HCA Data Coordination Platform supports ingestion of rich

and extensible metadata, cloud-scalable and multi-platform

mirrored data stores, cloud-native data processing pipelines

generating standardized and harmonized data, and user-friendly

data access for users. PCA data require specific metadata and

an emphasis on establishing data access patterns that accom-

modate data that is not openly consented. Pediatric research

may also emphasize experimental models that may motivate or

prioritize additional analysis elements under access control,

such as raw RNA-seq data and DNA-sequencing data for pro-

bands and families.

Ethics

The PCA must consider the ethics of obtaining samples from

healthy children who are not able to provide informed consent

themselves and releasing pediatric tissue data under informed

consent while simultaneously safeguarding patient identity.

The unique challenges of the PCA will be addressed by the

HCA Ethics Working Group to address frameworks on ethical

management and sharing of pediatric data and release recom-

mendations. Professional pediatric and genetics organizations

have recently offered input into ethical issues of genetic testing

and research in children (Botkin, 2016), but until recently, there

have been relatively few formal opinions on pediatric open-

data sharing. Recently, an interdisciplinary Paediatric Task

Team as part of the Global Alliance for Genomics and Health

(GA4GH; https://www.ga4gh.org/), has developed the Key

Implications for Data Sharing (KIDS) framework for pediatric

http://www.humancellatlas.org/PCA
https://www.humancellatlas.org/joinHCA
https://www.humancellatlas.org/joinHCA
https://www.ga4gh.org/
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genomics data sharing (Rahimzadeh et al., 2018), which will be

part of the developing ethical framework.

Since children grow to be adults and may wish to withdraw

their samples at a later date, the PCA must also consider devel-

oping procedures for secure sample extraction and removal

while retaining strict privacy of pediatric samples for those

studies opting to restrict open-sample access. Privacy control

will be of particular importance to donor parents, who are often

very concerned about open-data sharing of their children’s

data and its future consequences (Burstein et al., 2014).

Additional protection of patient privacy through genetic de-iden-

tification could be accomplished by variant removal from raw

transcriptional data while keeping original data available in a

controlled-access repository with a Data Access Committee

(such as dbGAP or similar). The HCA Ethics Working Group

will continue to work with clinicians, researchers, and organiza-

tions to support ethical best practices while ensuring data will

have the greatest impact on science while respecting patient

privacy.

Technology

Single-cell profiling technologies are undergoing rapid evolution.

Both dissociation-based and in situ spatial assays are gaining

throughput. The molecular types potentially interrogated by

these assays include DNA, RNA, protein, metabolite, chromatin

spatial conformation, and epigenetic modifications (Stuart and

Satija, 2019). Moreover, to acquire a more complete picture of

gene activities in single cells, measurements of gene expression

should ultimately go beyond changes in overall levels and also

interrogate changes in gene isoforms arising from pervasive

alternative processing and modifications of RNA (Park et al.,

2018). Functional states of cells are also determined by their

constellation of protein abundances and by the myriad post-

translational modifications that regulate their associations and

activities. Single-cell proteome analysis is at an earlier phase

of development, mainly limited by losses associated with mate-

rial handling and chromatographic separations which adversely

impact the sensitivity and hence depth of analysis. Advances

in these areas along with continual rapid development of ever-

more sensitivemass spectrometrymethods show some promise

for this field (Stoeckius et al., 2017; DeLaney et al., 2018; Budnik

et al., 2018; Couvillion et al., 2019). Continued improvement

across all platforms has allowed for simultaneous ‘‘multi-omic’’

sampling from single cells (Kelsey et al., 2017; Macaulay et al.,

2017; Hu et al., 2018b; Clark et al., 2018; Stuart and Satija,

2019). The average costs of an experiment, although significant

at this moment, are expected to decrease over time as technol-

ogies are further developed and may also be decreased through

multiplexing strategies (Gehring et al., 2018; Regev et al., 2018;

Stoeckius et al., 2018).

Other rapidly evolving areas of research in the single-cell com-

munity include meta-scale approaches to information manage-

ment, for which the pediatric community must provide input as

necessary to their development. For instance, without attention

to age- and stage-specific pediatric anatomy, useful spatial at-

lassing of cells to their tissue and physical locations may be

impeded. Another important consideration for PCA projects,

where individual genetics and environmental exposures are

important variables, is ensuring the use of methods and strate-

gies to maintain the value of community investments by mini-
mizing non-informative experimental replication and maximizing

cross-compatibility of data through validation and calibration of

new and enhanced technologies for both primary and secondary

data generation. Calibration standards between studies and

platforms and technology groups will allow for compatibility

and linkage between older standards and evolving technological

platforms. As part of the HCA, the PCA will reuse other HCA

protocols for pediatric tissues as appropriate and follow the

guidelines provided by the HCA Standards and Technology

Working Group.

Sample Ascertainment, Biopsy, and Management

Collaborative biological PCA networks across various institu-

tions will need to define strategies for tissue procurement, pres-

ervation, and single-cell sample preparation while maintaining

assay fidelity and throughput. Obtaining pediatric samples is

non-trivial but regularly accomplished in studies and clinical tri-

als. Approaches to obtaining pediatric samples have been

described across many studies, utilizing tissues from surgical

biopsy, transplantation byproducts, and parental donations

following accidents (Bandyopadhyay et al., 2018). Methods for

easily identifying available pediatric tissues from PCA collabora-

tors with attention to inclusion of demographic diversity, such as

sex and ethnicity, will be a critical component of the PCA’s bio-

banking efforts.

While protocols for single-cell analysis suggest processing

either newly acquired or cryopreserved tissues, there have

been advances in processing single-cell DNA from formalin-

fixed paraffin-embedded tissues to study whole-genome copy

number variation in cancer (Martelotto et al., 2017), as well as

recovery of transcriptomic data from cryopreserved tissues

(Konnikova et al., 2018), both of which open up opportunities

for similar analyses utilizing samples from pediatric tissue repos-

itories. The PCA could assist projects by linking them to other

well-established biobanks such as those founded by the Chil-

dren’s Oncology Group (https://www.childrensoncologygroup.

org/), the Children’s Brain Tumor Tissue Consortium (https://

cbttc.org/), and Alex’s Lemonade Stand (http://www.cccells.

org/).

Computation and Information Management

Like other HCA projects and biological networks, the computa-

tional challenges of the PCA are a critical consideration. New,

improved protocols for tissue preparation, cell isolation, and

computational analysis contribute to the growing size and

complexity of single-cell data sets (Svensson et al., 2018), an

example of which is the HCA’s recent release of transcriptome

data for approximately 530,000 cells from umbilical cord blood

and bone marrow (https://preview.data.humancellatlas.org/).

To standardize our approach and allow for comparison with

adult components of the HCA, the PCA will leverage the

HCA’s DCP, designed to harmonize deposited data and

provide data and portals for access, analysis tools, and

visualization. A key analytical need for the PCA, analyses of

longitudinal datasets, would be driven by PCA researcher

needs. Computational methods with the ability to cluster and

visualize cellular heterogeneity across millions of cells have

been recently introduced (Cho et al., 2018; Wolf et al., 2018;

Zhang and Taylor, 2018), which could be adapted for longi-

tudinal data, for instance using machine learning approaches

(Hu and Greene, 2018; van Dijk et al., 2018; Lin et al., 2017;
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Amodio et al., 2017; Schiebinger et al., 2017, 2019) to help map

cell lineages and trajectories particular to pediatric devel-

opment.

Data Standardization, Harmonization, and Reuse

In-depth anatomical knowledge of how individual cells relate to

tissues, organs, and organismal development has been encoded

using the Uberon anatomy and stage ontologies, which relate

anatomical entities at all spatio-temporal scales to develop-

mental stages. A PCA tissue map that supports ‘‘age and stage’’

requires novel approaches that can combine spatiotemporal

classification of cellular attributes in a ‘‘bottom-up’’ fashion

with existing ‘‘top-down’’ anatomical and developmental knowl-

edge. Exploratory data analysis of highly complex PCA data will

be critical for generating novel hypotheses on growth and devel-

opment in pediatric tissues. Traditional models for cellular clas-

sification during development need to work harmoniously with

omics-based single-cell classification strategies in order to

maximize utility across the broadest set of scientific use

cases aimed at understanding development and pediatric dis-

ease progression (Aevermann et al., 2018; Osumi-Sutherland,

2017). Despite the rich resources provided by theGeneOntology

and Cell Ontology to record cellular and subcellular gene

functions, much work remains in defining and linking across

new and existing ontological terms and frameworks on normal

and abnormal development, gene function, cell type, and cell

state (Gene Ontology Consortium, 2017). The PCA will work

with the HCA’s metadata team to ensure that the HCA metadata

schema in the DCP reflects the richness of pediatric-specific

metadata.

Funding and Resources

The opportunity to contrast children’s tissues at a single-cell

level across ages would provide a unique and unprecedented

window into pediatric diseases and their treatment. The PCA

represents a project with challenges in tissue procurement and

single-cell preparation but offers significant rewards in the po-

tential contributions to our understanding of children’s health

and disease. As a diverse and interdisciplinary effort, the PCA

would benefit from programs such as the NIH Common Fund

or the recently formed trans-NIH Pediatric Research Consortium

(N-PeRC), which was founded to coordinate pediatric research

programs across NIH’s 27 institutes and centers. It is expected

that some fundraising efforts will often be specific to partici-

pating institutions or groups and not PCA-wide, as has been

the case across the HCA.

Pilot Organ Systems
There exist a substantial number of tissues and organs poised for

exploration by a coordinated PCA, eachwith significant opportu-

nity for producing new insights along with translational and

clinical promise. While the PCA pilot studies should focus on

normal (non-diseased) tissue, this list is not intended to be

exhaustive or directive for all possible tissue, organ, and dis-

ease-oriented atlases.

Brain and Nervous System

Recent studies of CNS development are richly implicative of the

roles of genomic maturation — transcriptomic and epigenetic —

of neuron, astrocyte, oligodendrocyte, microglial, and endothe-

lial lineages. Tissue-level processes such as synaptogenesis,

myelination, and pruning start during gestation and continue
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through to adulthood (Emery, and Lu, 2015; Sharma et al.,

2016). Cellular models of neuronal development used for spatio-

temporal reasoning and classification will require reconciliation

with molecular characterization (Osumi-Sutherland et al.,

2012). Moreover, given that known genetic and non-genetic

risk factors only explain a fraction of overall disease risk (Manolio

et al., 2009), genomic variability between individual neurons of

the brain has long been suspected to contribute to the diversifi-

cation of neuronal complexity and possibly the burden of neuro-

logical disease (Muotri and Gage, 2006; D’Gama and Walsh,

2018). Molecular characterization of cell types in the developing

human brain has recently begun and has already led to the iden-

tification of novel cell types, novel cell-type-specific markers,

and insight into gene networks enriched in specific cells (Pollen

et al., 2015; Thomsen et al., 2016; La Manno et al., 2016; Now-

akowski et al., 2017). As of now, there have been few deep mo-

lecular characterizations of cell types in the pediatric brain as

compared to adult, including in critical neurological and brain

anatomical locations (Lake et al., 2018), such that hypotheses

linking children’s neurological health and disease to cell types

and cell states remain limited by our lack of foundational

knowledge.

Single-cell DNA sequencing of the human cortex has been

used to follow a neuron’s developmental lineage, through tracing

mutational patterns (Lodato et al., 2015) or using pseudotime

methods (Zhong et al., 2018). These methods could help to

reveal developmental lineages and anatomic complexities in

the brain with respect to organogenesis, maturation, and the

attainment of a fully functional central nervous system.

For the field of neurology, mapping neuronal lineage and as-

sessing the variability within the genetic and epigenetic land-

scape will be relevant for progress in common neurological

disorders in children such as epilepsy, autism, and develop-

mental delay. For example, studies into somatic mosaicism —

which is increasingly recognized as a source for focal epilepsies

and brain malformations — led to the discovery of the mTOR

pathway as a crucial mechanism for epilepsies (Lee et al.,

2012; Mirzaa et al., 2016; Alcantara et al., 2017; Lim et al.,

2017a). In addition, somatic brain mutations unrelated to the

mTOR pathway have also recently been discovered in lesional

and non-lesional epilepsy, illustrating the potential power of a

PCA for characterizing previously opaque brain disorders

through sequencing (Winawer et al., 2018). In patients with

autism, postzygotic mutations, only affecting a subset of cells,

are increasingly recognized as a disease mechanism (Lim

et al., 2017b). In addition, the cellular architecture of human

neurons may have unique features, such as human-specific

interneuron subtypes (DeFelipe et al., 2006; Boldog et al.,

2018), suggesting that elucidating the genetic and epigenetic

variability in the human brain through a PCA may discover previ-

ously unrecognized cellular patterns that are unique to the devel-

oping human brain.

Cell signaling in the neural stem cells, such as the Notch

pathway, can be detected in pediatric brain tumors (Lasky and

Wu, 2005) and single-cell RNA sequencing of developing

human cortex has revealed a diversity of neural stem and pro-

genitor cells with potential roles in neurodevelopmental diseases

(Nowakowski et al., 2017). In the field of neuro-oncology, pediat-

ric CNS cancers arise in distinct neuroanatomical locations,
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different but predictable ages of onset, and are frequently asso-

ciated with lineage-specific developmental transitions. Profiles

of normal brain tissue and of neural stem cells by age as provided

by the PCA is necessary in order to develop hypotheses as to cell

types and processes giving rise to CNS tumors and the associ-

ated risks involved (Gage and Temple, 2013).

Gut

The normal human gut manages fluid, electrolyte, and nutrient

absorption needed for survival while protecting us from intestinal

microbes. Cells performing these tasks include epithelial

absorptive cells, mucus-producing cells, stem cells, transit

amplifying cells, Paneth cells, enteroendocrine cells, endothelial

cells, fibroblasts, smooth muscle cells, intestinal pacemaker

cells, enteric neurons, enteric glia, and a wide array of immune

system cells in the bowel wall (Smillie et al., 2018; Haber et al.,

2017). Some of these cell types can be further subdivided. For

example, there are at least 10 types of enteroendocrine cells

that sense luminal contents and mechanical distension and

then secrete a wide array of hormones and cytokines that impact

bowel epithelial function, motility, mucosal immunology, pancre-

atic endocrine and exocrine function, gallbladder contractility,

and appetite (Worthington et al., 2018; Psichas et al., 2015).

The enteric nervous system contains about as many neurons

as the spinal cord, and there are dozens of neuronal and glial

cell types that control motility, regulate blood flow, and impact

immune and epithelial cell function (Furness, 2012). Intestinal ab-

sorption, patterns of motility, bowel movement frequency, and

susceptibility to intestinal injury all change as children grow in

response to microbes, nutrients, and genetic programming, so

PCA data for the bowel will illuminate many aspects of human

health. For example, late fetal bowel is particularly susceptible

to serious inflammation called necrotizing enterocolitis (NEC), a

problem that does not occur in term infants, older children, or

adults (Niño et al., 2016). NEC susceptibility is presumed to

reflect age-dependent changes in intestinal barrier function,

bowel motility, and immune system function that may be re-

flected in changes in cell populations as well as single-cell

gene expression patterns at various ages. In the first 5 years of

a child’s life, the bowel changes dynamically with the length of

the small and large intestine nearly doubling during this interval

(Struijs et al., 2009). Remarkably, individual cells must maintain

regional identity in this dynamically growing organ because pat-

terns of bowel motility and epithelial function differ markedly

along the bowel length. Intestinal microbiota changes dramati-

cally in the first 3 years of life, in part because of diet changes

but also because of changes in immune and epithelial cell func-

tion. In contrast, intestinal microbiota is relatively stable during

adulthood (Yatsunenko et al., 2012). These differences are

important because the composition of the gut microbiome has

been shown to significantly impact health. Supporting the hy-

pothesis that critical changes occur during late fetal and post-

natal stages, a recent single-cell study on human fetal intestine

revealed over 30 cell types and demonstrated important differ-

ences between fetal and adult intestine (Gao et al., 2018).

Defining what is normal in varied bowel regions at distinct

pediatric ages is essential, especially as we consider disease

processes unique to the pediatric age group including congenital

anomalies, metabolic and mitochondrial diseases, and single-

gene defects that cause bowel dysfunction.
As another example where PCA data for the bowel will be valu-

able, chronic disruption in the gut’s cellular function and compo-

sition can lead to very early onset and pediatric inflammatory

bowel disease (IBD). IBD affects over 80,000 American children.

It manifests before 18 years of age in 25% of the �2 million

affected Americans (Loftus, 2003), and the disease is increasing

most rapidly in very young children less than 6 years of age

(Benchimol et al., 2017). The specifics of the tissue environment

and the genetic origins of IBD vary between individuals, with

many identified genetic variants that result in disease develop-

ment by altering the intestinal barrier or immune cell function

causing hyperimmunity, autoimmunity, or immunodeficiency

(Peloquin et al., 2016; Jostins et al., 2012). The phenotype of

pediatric IBD can be different, (Billiet, and Vermeire, 2015) and

more severe (Rosen et al., 2015), as compared to older patients.

There can also be differences in patterns of bowel motility

(Chumpitazi, and Nurko, 2008). The immune system may play

a more prominent role in pediatric IBD, particularly in children

with the disease, as the immune system develops in the first

3 years of life (Simon et al., 2015). The Gut Cell Atlas program

supported by theHelmsley Charitable Trust will focus on such ef-

forts (Helmsley Trust, 2018).

Collectively, these observations suggest a critical need to ac-

quire pediatric bowel data (e.g., pooled and single-cell RNA

sequencing, metabolomic data, proteomic data, and information

about cellular organization) for a wide array of intestinal cell

types, at varied ages, and in many bowel regions. The PCA

can provide these critical data about cell populations using

mucosal biopsies and surgically resected tissue from healthy

(e.g., organ donor) and diseased children (e.g., inflammatory

bowel disease and Hirschsprung disease resection specimens).

Comparisons between PCA and adult HCA data will provide

valuable insight as we develop new approaches to rebuild and

repair damaged gut epithelium and establish innovative treat-

ment strategies for intestinal diseases. PCA data will also facili-

tate generation of new organs from stem cells to replace or repair

injured bowel.

Heart

The heart undergoes a period of postnatal remodeling involving

significant gene splicing and expression changes that are

distinct from those in adults (Xu et al., 2005). In children, congen-

ital heart disease (CHD) makes up nearly one-third of all major

congenital anomalies, with an occurrence of 8 out of 1,000 live

births (van der Linde et al., 2011), and although significant prog-

ress has been made in understanding genetic contributions to

CHD (Jin et al., 2017), it is not yet well understood how abnormal

tissue development leads to CHD. The vital function of the heart

has been known for hundreds of years, but the molecular and

cellular underpinnings of postnatal heart maturation and function

remain poorly understood. Hearts of different pediatric stages

exhibit significant anatomical, genetic, and functional heteroge-

neity. Cell-type composition and metabolic states in the heart

undergo significant changes and remodeling for functional

maturation during the whole pediatric period. Single-nucleus

RNA-seq of nearly 20,000 nuclei has been used to study different

postnatal developmental stages of the mouse heart, which has

revealed major and rare cardiac cell types as well as significant

anatomical and functional heterogeneity among all cell types in

the postnatal developing heart (Hu et al., 2018a; DeLaughter
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et al., 2016). Moreover, when applied to a mouse model of pedi-

atric mitochondrial cardiomyopathy, profound cell-type-specific

modifications of the cardiac transcriptome were revealed at sin-

gle-cell resolution, including changes of subtype composition,

maturation states, and functional remodeling of each cell type

(Hu et al., 2018a). Similar experimental approaches can also

be applied to studying the pediatric heart. A PCA of the heart

can fill these knowledge gaps and bring novel insights into

many pediatric heart diseases that affect tens of thousands of

children each year.

Hematopoietic and Immune Systems

Immune homeostasis has been shown to shift dramatically as

children lose maternally transferred antibodies, acquire new in-

fections and antigenic exposures, and experience changes in

microbiota over time (Putignani et al., 2014; Kollmann et al.,

2017; Olin et al., 2018). The hematopoietic and immune system

undergo remarkable changes in the first years of a child’s life,

with profound impact on health throughout the rest of the life-

span. Children are born with a relatively naive T/B cell compart-

ment, hypofunctional innate immunity (Collins et al., 2018), and

fetal red blood cells. Intrinsic developmental gene expression

programs and extrinsic environmental influences over the

following years shape the developing hematopoietic system

(Schatorjé et al., 2011; Belkaid and Hand, 2014). Perturbed

development of immune competence and tolerance has been

linked to allergies, atopic disease, autoimmune disease, cancer,

andmetabolic diseases (Renz et al., 2017), accounting for a large

burden of human morbidity and health spending. Vaccination,

our primary effort to modify immunity throughout the world, is

almost exclusively performed in the young child and in early

adolescence (Levy et al., 2013). The neonatal, pediatric and adult

immune systems respond very differently to infection, trauma,

and other inflammatory insults (Maddux, and Douglas, 2015;

Beura et al., 2016); therefore, it is critical to define and under-

stand the shifting pediatric hematopoietic system separately

from that of adults.

Recently, single-cell transcriptomic studies of the adult he-

matopoietic and immune systems (reviewed in Papalexi and Sat-

ija, 2018) have provided new insights into the immune system,

including leukocyte developmental and differentiation hierar-

chies in the bone marrow (Velten et al., 2017), the effect of mye-

lodysplastic clones on normal hematopoiesis, and the specificity

and functional response to infection and antigenic challenges

(Stubbington et al., 2017; Villani et al., 2017). A recent unbiased

transcriptomic survey of over 100,000 hematopoietic bone

marrow cells from eight healthy adults revealed significant varia-

tion in the relative proportion of distinct cell lineage between

donors as well as lineage-dependent gene expression with

donor age (Hay et al., 2018). Another study on bone marrow

included a sample from a single child who had a remarkably

different distribution of transcriptionally defined stem and pro-

genitor populations compared to the adult samples, making a

strong case for the necessity of a pediatric-specific immune

cell atlas (Zhao et al., 2017). The HCA preview data include

cord blood samples from multiple individuals, showing substan-

tial variation (https://preview.data.humancellatlas.org/).

Understanding normal pediatric hematopoietic and immune

development would thus have critical impact on child and adult

health. Pediatric leukemia is the most common pediatric cancer
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and can have an age-dependent prognosis, perhaps linked to

the immune system’s development in ways that are not yet un-

derstood. While the field of hematopoiesis has learned from

the study of model organisms such as mice, many of the devel-

opmental dependencies discussed above are specific to hu-

mans and cannot be modeled or understood without looking at

the human pediatric hematopoietic and immune system as it

matures. The pediatric immune atlas will sample from primary

(bone marrow, thymus) and secondary (lymphatic fluid, tonsil,

peripheral blood, and in rare cases, spleen) lymphoid tissues,

as well as immune cells obtained from tissues such as lung, liver,

intestine, and skin, across a wide range of ethnic backgrounds

and ages including newborns and preterm infants.

Kidney

The kidneys receive 20% of the heart’s blood output and in

adults generate approximately 180 liters of glomerular filtrate

per day. In mammals, the normal kidney forms from a lineage-

specific set of progenitor cells that finish differentiating soon

after birth (Lindström et al., 2018). There is considerable individ-

ual variation in the number of nephrons per kidney, with impor-

tant medical consequences (Bertram et al., 2011). The basis

for this variation is not understood. Children can suffer a number

of kidney diseases including structural malformations, glomeru-

lonephritis, and focal segmental glomerulosclerosis (FSGS)

(Harambat et al., 2012). FSGS, themost common glomerular dis-

ease in pediatric patients, is poorly understood, progressive,

challenging to treat, and the risk of recurrence in transplanted

kidneys can be as high as 30%–40% (Kiffel et al., 2011). Com-

parison of the cellular composition of primary and recurrent

FSGS kidneys with normal age-matched kidney tissue may

help contrast the cell-level pathophysiological processes

operating in FSGS. The PCA would contribute to our under-

standing of the normal and abnormal development of the

human kidney by providing samples of cell types and population

distributions from normal fetal and early neonatal tissues. The

PCA would also work in a synergistic and complementary

fashion with the Kidney Precision Medicine Initiative (https://

kpmp.org/), which aims to provision deep classification of adult

kidney disease patients and their cellular attributes in a kidney

tissue atlas.

Liver

The liver is the largest solid organ in the body, critical for

metabolic function. For children with end-stage liver disease,

transplantation is often the only option. 33% of pediatric liver

transplantations in North America from 1995-2002 were per-

formed on children less than 1 year of age (McDiarmid et al.,

2004). Biliary atresia (BA), a progressive fibrosing cholangiop-

athy presenting in infancy, is the leading indication for liver trans-

plantation in children (Asai et al., 2015; Verkade et al., 2016).

Recent studies have shown that damage to bile ducts in BA

begins at or before birth (Harpavat et al., 2011). A detailed map

of gene expression in infant bile ducts, which continue to

develop in the weeks and months postnatally, could shed light

on the pathogenesis of BA and other developmental disorders

of bile ducts presenting during childhood. Targeted interventions

to prevent the development and progression of end-stage liver

disease in children will require a detailed understanding of the

cellular components of the normal pediatric liver. Recently, a

map of the adult human liver, as identified by single-cell RNA

https://preview.data.humancellatlas.org/
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sequencing revealed distinct liver resident macrophages in the

human liver, with inflammatory and non-inflammatory properties

(MacParland et al., 2018). The rationale for developing a pediat-

ric-specific liver map lies in the fact that there are differences in

metabolic functions in the pediatric and adult liver although the

mechanisms are unclear (Blanco et al., 2000). Drug metabolism

differs substantially in infants and children as compared with

adults (Stephenson, 2005); a map of gene expression in hepato-

cytes in the infant liver would provide detailed information about

the timeline for hepatocytematuration during early development.

Moreover, there are specific liver diseases that are found in

adults, for example, non-alcoholic fatty liver disease (NAFLD),

that can have a unique histological presentation in children

(Schwimmer et al., 2005), possibly suggesting distinct underlying

dysfunctions are promoting disease in children. A baseline map

of the healthy pediatric liver will help in the identification of path-

ological cellular processes driving the development and pro-

gression of pediatric liver diseases leading to liver failure.

Lung

The human lung is a wonderfully complicated organ required

for the transition to air breathing at birth and for ventilation

throughout our lifetime. Moreover, the lung constitutes a primary

interface with the environment, generating innate and adaptive

immune responses to danger signals. Lung function is inherently

linked to its remarkable tubular-alveolar structure of the airways

and the lung parenchyma and dependent upon the contributions

and interactions among a great diversity of cells and the matrix

scaffolds that support them. During lung morphogenesis and

until maturity, cells proliferate, migrate, differentiate, and interact

to form and maintain lung architecture (Hogan et al., 2014). A

diversity of mesenchymal, epithelial, endothelial, vascular,

neuronal, and hematopoietic immune cells are present in precise

numbers and stereotyped locations, interacting to maintain tis-

sue homeostasis and regeneration after injury. The lung is vulner-

able to environmental challenges, being directly exposed to

inhaled gases, particles, toxins, and microbial pathogens that

underlie the pathogenesis of acute and common chronic lung

disorders affecting children. Many of these disorders have life-

long health consequences. Respiratory Distress Syndrome and

Bronchopulmonary Dysplasia are relatively common disorders

affecting newborns and preterm infants (Reuter et al., 2014).

Chronic disorders of mucociliary clearance and host defense,

for example, cystic fibrosis and primary ciliary dyskinesia, are

associated with chronic inflammation, infection, and tissue re-

modeling with lifelong consequences. Reduced lung growth dur-

ing pediatric development, such as observed in children with

asthma, may even predispose to chronic obstructive pulmonary

disease (COPD) later in life (McGeachie et al., 2016). Asthma and

COPD are chronic inflammatory lung diseases that arise from the

interaction of a genetic predisposition to develop the disease

with specific environmental factors that trigger disease incep-

tion. While asthma typically starts in the first few years of life

(Holt and Sly, 2012), most asthma studies, including the first

single-cell analyses (Vieira Braga et al., 2019), study the chronic

phase of the disease, thereby potentially missing crucial causa-

tive mechanism operating in children developing the disease.

Also for COPD, where expression of the disease is generally

only observed after the age of 40 (Rabe and Watz, 2017), under-

standing the cellular mechanisms governing lung growth during
pediatric development is of critical importance to be able to

design novel interventions aimed at lung repair.

The roles of multiple cell types and their interactions in normal

and diseased lung can be explored by single-cell analytic ap-

proaches. For example, single-cell RNA profiling of human

epithelial cells has provided insights into the pathogenesis of

pulmonary fibrosis, cystic fibrosis, and asthma (Xu et al., 2016;

Montoro et al., 2018; Reyfman et al., 2018; Vieira Braga et al.,

2019). Atypical non-lineage restricted epithelial cells were

identified that contribute to tissue remodeling in idiopathic

pulmonary fibrosis. Likewise, a new epithelial cell type, the iono-

cyte, which expresses CFTR, was identified by single-cell

sequencing, supporting its role in the pathogenesis of cystic

fibrosis (Montoro et al., 2018; Plasschaert et al., 2018).

One notable reference atlas project, funded by the National

Heart, Lung, and Blood Institute (NHLBI), LungMAP (LungMap,

2019) has provided detailed molecular portraits of distal lung

cell class and subclasses of the mouse and is beginning to cover

proximal bronchial and human samples (https://www.lungmap.

net/about/lungmap-team/nhlbi). Data from the efforts thus far

includes more than 40,000 single cells from developing and

postnatal stages as well as bulk cell profiles of mRNA, miR, pro-

teins, lipids, metabolites, and epigenomic profiling (Ardini-Pole-

ske et al., 2017; Du et al., 2017). An initial analysis of neonatal and

pediatric human lung samples has also begun (Bandyopadhyay

et al., 2018), with key initial goals of providing profiles of sorted

cell types, via mRNA, protein, lipid, metabolite, and epigenomic

measures and technologies representing key goals. Micro- and

macro-2D and micro- and macro-3D imaging modalities are

also part of the overall effort with goals that include developing

integrative models of cell and tissue morphogenesis, signaling

networks, andmulti-scale physiology, to understand lung forma-

tion, maturation, function, injury, and repair (Xi et al., 2017; Zach-

arias et al., 2018). Substantial differences of cell-type-specific

signatures between embryonic, fetal, and postnatal cell types

occur that demonstrate a high degree of lineage specialization

reflective of different transcription factor drivers and important

developmental pathways that are not shown in corresponding

cell types of postnatal lung (Treutlein et al., 2014; Ding et al.,

2018). The ability to accurately analyze large numbers of cells

by single-nuclear RNA sequencing, chromatin accessibility,

and high-resolution imagingwill enable the use of human tissues,

including our archival tissues from children with rare lung dis-

eases, to identify the cells, genes, and gene networks involved

in the pathogenesis of acute and chronic lung diseases.

Placenta

The placenta is a unique temporary organ, which acts as lungs,

liver, gut, kidneys, and endocrine glands for the fetus, supplying

it with nutrients and oxygen, and harmonizes the cross-talk be-

tween the fetal and maternal immune system (Burton, and Fow-

den, 2015). The structure of the maternal-fetal interface features

a complex relationship between fetal cells and maternal tissue.

Specifically, fetal trophoblasts invade into the maternal decidua,

orchestrated by maternal immune cells, stromal cells, and glan-

dular epithelial cells. While it is essential for intrauterine fetal

growth and development, it also plays a major role in perinatal

and pediatric health outcomes. Dysfunction at the maternal-fetal

interface can have significant health implications to mothers and

offspring, such as increased risk of cardiovascular disease in
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offspring after maternal hypertension in pregnancy (McDonald

et al., 2008; Seely et al., 2015), or increased risk of type 2 dia-

betes in the offspring during late adult life (Kajantie et al.,

2017). One such dysfunction is preeclampsia, a syndrome man-

ifested by a sudden increase in blood pressure and accompa-

nied by proteinuria or in association with thrombocytopenia,

impaired liver function, development of renal insufficiency, pul-

monary edema, or new-onset cerebral or visual disturbances

(American College of Obstetricians and Gynecologists et al.,

2013). It affects 7%–10% of pregnancies worldwide and is the

leading cause of maternal and fetal morbidity and mortality.

The cause of preeclampsia, effective treatment, and reliable

onset prediction are still unknown; however, it is evident that

the placenta plays amajor role in the development of this disease

(Huppertz, 2008). Furthermore, disruption of the fine balanced

cross-talk between immune cells and trophoblast early in

pregnancy might cause abnormal placentation leading to faulty

placental perfusion and disturbed fetal nutrition (Hiby et al.,

2010; Przybyl et al., 2016). The effect of preeclampsia on a child

requires more attention in order to minimize risks in adulthood.

For example, Reveret et al. reported an immediate impact of pre-

eclampsia on the children’s blood pressure, measured within

days of birth, necessitating long-term cardiovascular follow-up

and targeted preventive strategies for affected offspring (Reveret

et al., 2015). The statement that child health starts from the

placenta would not be an exaggeration, but the details of that de-

pendency are not well understood.

Studies featuring placental tissues at single-cell resolution

have been recently published in mouse (Nelson et al., 2016)

and human (Pavli�cev et al., 2017). They revealed the cell commu-

nication network together with functionally distinct cell types of

the maternal-fetal interface at term; used transcriptomic infor-

mation derived from single cells for the interpretation of cell-

free plasma RNA, thus opening new possibilities for non-invasive

diagnostics (Tsang et al., 2017); and described human tropho-

blast differentiation. These results advanced our understanding

of human placentation as well as the stark differences between

rodent and human (Liu et al., 2018). Reproductive success is

dependent on the maternal-fetal interface in the first weeks of

pregnancy (Smith, 2010). Recently, a comprehensive single-

cell map of first-trimester maternal-fetal interface has revealed

novel subsets of maternal and fetal cells and their crucial tolero-

genic role in this environment (Vento-Tormo et al., 2018). The

PCA will focus on expanding this knowledge in healthy tissues

to help inform later work targeting diseases of pregnancy,

which account for the large proportion of child health com-

plications. Since the placenta undergoes major molecular,

structural, and functional rearrangements during three trimes-

ters, the PCA would work with the greater HCA community

to perform a fine-grain map of all stages of placenta develop-

ment. One of themajor implications of the placenta PCA subproj-

ect would be improved cell-type profiles and interpretation of

their interactions, which are important not only for future

placenta single-cell studies but also for re-annotating accumu-

lated bulk RNA-seq data, introducing an added value to the

whole project.

Skeletal Muscle

At over a third of the human body weight, skeletal muscle is not

just the single largest tissue in the human body, but it also con-
22 Developmental Cell 49, April 8, 2019
tributes the most to metabolic and physical health by regulating

energy usage, storage, production, and regulation of body tem-

perature to name just a few of its functions (Zurlo et al., 1990;

Rowland et al., 2015). While skeletal muscle is home to a variety

of cell types, its minimum functional unit is the multinucleated

syncytial cell called the myofiber. This mesodermal cell lineage

is formed by the fusion of mono-nucleated precursors called

myoblasts, derived primarily from satellite cells. The myogenic

process begins early during human growth by a developmental

program that leads to the addition of nuclei to the growing mus-

cle fiber, and it is followed by the growth of the muscle fibers to

its optimized size based on the extent of use (or disuse) of the in-

dividual muscle. While the satellite cells remain quiescent during

adult life and much of the muscle activity maintains status quo,

the muscle maintains the full capacity to grow and regenerate

in response to stress, trauma, or disease that damages the my-

ofibers (Lepper et al., 2011; Sambasivan et al., 2011). Thus, the

cellular composition and the expressome of skeletal muscle

changes from early development and growth to a homeostatic

state during adulthood while, at all times, maintaining its ability

to efficiently respond to changes that may impinge upon it. The

knowledge of these skeletal muscle abilities has come from

the cellular, molecular, and genetic analysis of cultured satellite

cells and a variety of model organisms including C. elegans,

D. melanogaster, D. rerio, and M. musculus. Such analyses

have identified a wide array of myogenic regulatory factors and

cell types that contribute to the process of developmental or

regenerative myogenesis. Single-cell RNA analyses have been

performed on adult satellite cell and non-myogenic cells isolated

frommice and humans (Cho and Doles, 2017; Tabula Muris Con-

sortium et al., 2018; Giordani et al., 2018; Heuvel et al., 2018).

While offering some insights into the molecular complexity and

diversity, it does not include the multi-nuclear myofibers respon-

sible for the majority of muscle function. In contrast, single-nu-

cleus sequencing has only been performed on human myotubes

(Zeng et al., 2016), which supports the use of single nuclear

extraction, sequencing, and analysis in skeletal muscle tissue.

Furthermore, with myofibers being the minimal functional entity

of muscle use, disuse, damage, or regeneration, there is a press-

ing need to understand the genetic diversity of the myofibers.

This diversity likely exists between the nuclei of different types

of the myofibers (e.g., slow- and fast-twitch muscle fibers) and

also perhaps among the multiple nuclei that populate individual

myofibers, as reported by cultured cell analysis (Zeng et al.,

2016). Little attention has also been focused on analyzing the

developing muscle, which is of greater relevance to the pediatric

population. In addition, the puzzling facts that muscles at

different anatomical locations are differentially affected in in-

herited muscular dystrophies may be explained by intrinsic dif-

ferences in the muscle cells. The PCA effort is required to

develop an atlas of such single-cell profiles for mono-nucleated

cells in human muscle as well as single-nucleus RNA profiles for

human myofibers during development. Such information will be

indispensable for understanding how the molecular program of

developing muscle allows for the balancing act required to

maintain the terminally differentiated status of the muscle while

having the capacity to regenerate fully. Disruptions in this

balancing act have been identified in congenital and degenera-

tive skeletal muscle disorders. Analyses of normal healthy
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developing muscle tissue will provide the required benchmark

for this process and support the ongoing efforts in developing

treatments that restore the balance lost in diseased muscle

due in genetic and other diseases.

Skin

As one of the most accessible human organs, skin provides the

perfect system to obtain tissue to understand the changes and

specialization of single cells and how they vary over age from

prematurity through adolescence, from multiple sites on the

body, over multiple ethnic backgrounds, and between sexes.

Skin plays six primary functions: protection, absorption, excre-

tion, secretion, regulation, and sensation (Proksch et al., 2008).

The outermost layer of the skin, the epidermis, is composed of

multiple cell types including keratinocytes, melanocytes, Lang-

erhans cells, mast cells, and Merkel cells (Matsui, and Amagai,

2015), and below that, the dermis is made of fibroblasts which

secrete the connective tissue matrix and is a home for nerve

and endothelial cells. The composition of these layers changes

significantly from infancy to adulthood in terms of cell distribu-

tion, connective density, caliber and distribution of hair follicles,

and number and location of apocrine and sebaceous glands as

well as in inherent elasticity and ability to remodel. Children

with rare disorders like ichthyosis and epidermolysis bullosa

have provided insight into the careful interplay of cells, lipids,

collagen, and proteins needed to provide the barrier function

and strength of the skin (Matsui, and Amagai, 2015).

The human skin has been profiled in the Human Protein Atlas

where tissue sections for histology and tissue cDNAs formicroar-

rayswereused toexploreproteins expressed in the skin, follicular

units, sweat glands, and sebaceous glands (Uhlén et al., 2015).

Through this project, over 400 genes have been shown to be

highly enriched in the skin compared to other organs. In-depth

analysis of the elevated genes using antibody-based protein

profiling allowedcreationof aportrait of in-situprotein expression

for the different layers of the epidermis and in the dermis (Edqvist

et al., 2015). Despite these advances, proteomic and expression

analysis of normal skin tissue from multiple sites on the human

body from infancy through adolescence has not been performed

in a systematic way and is critical for understanding develop-

mental changes in pigmentation, skin regeneration, hair cycle,

and connective tissue structure. A pediatric skin atlas would be

able to provide normal skin references for studies onpathological

skin conditions related to disrupted growth and development,

including congenital melanocytic lesions, Spitz nevi, epidermal

nevi, vascular tumors, vascular malformations, and lipomas and

also would be able to inform research on tissue-engineered

skin substitutes for wounds and impaired barrier conditions.

Pediatric Cancer

Childhood cancers are the leading cause of disease-related

mortality, where leukemia and brain tumors lead the list as

the deadliest pediatric cancers in absolute numbers (NCI,

2018). Childhood is one of the two peaks of leukemia inci-

dence, and a number of developmental hematopoietic abnor-

malities first manifest in childhood. Children’s and adult tumors

are genomically and genetically distinct (Ma et al., 2018; Liu

et al., 2016) and children tumors have a strong developmental

component. The age at which a child develops leukemia or

neuroblastoma is one of the strongest predictors of outcome

(Riehm et al., 1987; Mastrangelo et al., 1986; Smith et al.,
1996). While several frequent leukemia-imitating genomic al-

terations are common between adults and children, specific

classes of variation, such as splicing factor mutations in acute

myeloid leukemia, are restricted to adults (Farrar et al., 2016).

A recent study using single cells comparing normal renal tissue

and renal tumors from both children and adults has shown that

adult kidney cancers appear to be derived from a subtype of

proximal convoluted tubular cells, while pediatric Wilms tu-

mors likely arise from aberrant fetal cells (Young et al., 2018).

Single-cell studies of pediatric H3K27M diffuse gliomas have

identified predominant oligodendrocyte precursor cell sub-

populations, from which stem-like cycling cells propagate the

disease (Filbin et al., 2018). A subset of metastatic neuroblas-

toma often spontaneously regresses without treatment in

infants under 12 months of age, but not in older children, high-

lighting the developmental influence on survival in patients with

this cancer (Nickerson et al., 2000).

Although not in the direct scope of profiling normal tissues, the

PCA can partner with researchers driving single-cell pediatric

tumor atlases to help source normal tissues for comparison.

These comparisons would help to produce high-resolution in-

sights into oncogenic mechanisms at the sub-clonal level. Any

pediatric tumor atlas would benefit from the PCA’s normal sin-

gle-cell profiles and can compare these to the most common

cancers of childhood including, but not limited to, leukemia, neu-

roblastoma, high-grade glioma, medulloblastoma, neurofibro-

matosis, and ependymoma. The comprehensive analysis of

very high-risk pediatric lymphoblastic leukemia, neuroblastoma,

and high-grade glioma is currently part of the NIH’s Cancer

Moonshot Human Tumor Atlas Network (HTAN). A PCA would

provide a much-needed framework of normal development

that will be needed to understand how aberrant development

leads to pediatric cancer.
Summary
Pediatric tissues are different from adult tissues in several

important ways, most notably because they are still undergo-

ing development. Here, we highlight several unique opportu-

nities and advantages in the PCA for the medical and research

communities. Systematic analysis of pediatric tissues and or-

gan systems at different developmental stages would improve

our understanding of cell-type-specific responses to clinical

situations, even those where collecting single-cell data on

temporal and perturbational responses is infeasible. The

PCA would provide integrated observational atlas data and

develop algorithms to mine these data in the context of both

early and advanced developmental dynamic processes.

Deep single-cell-based profiling of pediatric tissues of both

dissociated cells and cells within tissues, the goal of the

PCA as part of the overall HCA effort, would provide the

framework to define and characterize cell types, cell states,

and their interactions that, together, lead to normal childhood

development and are subverted by childhood disease states

and processes.
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