32 research outputs found

    A CMOS compatible ultracompact silicon photonic optical add-drop multiplexer with misaligned Sidewall Bragg gratings

    Get PDF
    We experimentally and via simulations demonstrate ultracompact single-stage and cascaded optical add-drop multiplexers using misaligned sidewall Bragg grating in a Mach-Zehnder interferometer for the silicon-on-insulator platform. The single-stage configuration has a device footprint of 400 μm × 90 μm, and the cascaded configuration has a footprint of 400 μm × 125 μm. The proposed designs have 3-dB bandwidths of 6 nm and extinction ratios of 25 dB and 51 dB, respectively, and have been fabricated for the transverse electric mode. A minimum lithographic feature size of 80 nm is used in our design, which is within the limitation of 193 nm deep ultraviolet lithography

    Flexible Coherent Optical Access: Architectures, Algorithms, and Demonstrations

    Full text link
    To cope with the explosive bandwidth demand, significant progress has been made in the ITU-T standardization sector to define a higher-speed passive optical network (PON) with a 50Gb/s line rate. Recently, 50G PON becomes mature gradually, which means it is time to discuss beyond 50G PON. For ensuring an acceptable optical power budget, beyond 50G PON will potentially use coherent technologies, which can simultaneously promote the applications of flexible multiple access such as time/frequency-domain multiple access (TFDMA). In this paper, we will introduce the architectures, algorithms, and demonstrations for TFDMA-based coherent PON. The system architectures based on an ultra-simple coherent transceiver and specific signal spectra are designed to greatly reduce the cost of ONUs. Meanwhile, fast and low-complexity digital signal processing (DSP) algorithms are proposed for dealing with upstream and downstream signals. Based on the architectures and algorithms, we experimentally demonstrate the first real-time TFDMA-based coherent PON, which can support at most 256 end users, and peak line rates of 100Gb/s and 200Gb/s in the upstream and downstream scenarios, respectively. In conclusion, the proposed technologies for the coherent PON make it more possible to be applied in the future beyond 50G PON.Comment: The paper has been submitted to the Journal of Lightwave Technolog

    China Energy Databook. Revision 4

    Get PDF
    The Energy Analysis Program at LBL first became involved in Chinese energy issues through a joint China-US symposium on markets and energy demand held in Nanjing Nov. 1988. EAP began to collaborate on projects with the Energy Research Institute of China`s State Planning Commission. It was decided to compile, assess, and organize Chinese energy data. Primary interest was to use the data to help understand the historical evolution and likely future of the Chinese energy system; thus the primary criterion was to relate the data to the structure of energy supply and demand in the past and to indicate probable developments (eg, as indicated by patterns of investment). Caveats are included in forewords to both the 1992 and 1996 editions. A chapter on energy prices is included in the 1996 edition. 1993 energy consumption data are not included since there was a major disruption in energy statistical collection in China that year

    Automatic detection of low surface brightness galaxies from SDSS images

    Full text link
    Low surface brightness (LSB) galaxies are galaxies with central surface brightness fainter than the night sky. Due to the faint nature of LSB galaxies and the comparable sky background, it is difficult to search LSB galaxies automatically and efficiently from large sky survey. In this study, we established the Low Surface Brightness Galaxies Auto Detect model (LSBG-AD), which is a data-driven model for end-to-end detection of LSB galaxies from Sloan Digital Sky Survey (SDSS) images. Object detection techniques based on deep learning are applied to the SDSS field images to identify LSB galaxies and estimate their coordinates at the same time. Applying LSBG-AD to 1120 SDSS images, we detected 1197 LSB galaxy candidates, of which 1081 samples are already known and 116 samples are newly found candidates. The B-band central surface brightness of the candidates searched by the model ranges from 22 mag arcsec −2^ {- 2} to 24 mag arcsec −2^ {- 2} , quite consistent with the surface brightness distribution of the standard sample. 96.46\% of LSB galaxy candidates have an axis ratio (b/ab/a) greater than 0.3, and 92.04\% of them have fracDev_rfracDev\_r\textless 0.4, which is also consistent with the standard sample. The results show that the LSBG-AD model learns the features of LSB galaxies of the training samples well, and can be used to search LSB galaxies without using photometric parameters. Next, this method will be used to develop efficient algorithms to detect LSB galaxies from massive images of the next generation observatories.Comment: 11 pages, 9 figures,accepted to be published on MNRA

    Regulatory controls of duplicated gene expression during fiber development in allotetraploid cotton.

    Get PDF
    Polyploidy complicates transcriptional regulation and increases phenotypic diversity in organisms. The dynamics of genetic regulation of gene expression between coresident subgenomes in polyploids remains to be understood. Here we document the genetic regulation of fiber development in allotetraploid cotton Gossypium hirsutum by sequencing 376 genomes and 2,215 time-series transcriptomes. We characterize 1,258 genes comprising 36 genetic modules that control staged fiber development and uncover genetic components governing their partitioned expression relative to subgenomic duplicated genes (homoeologs). Only about 30% of fiber quality-related homoeologs show phenotypically favorable allele aggregation in cultivars, highlighting the potential for subgenome additivity in fiber improvement. We envision a genome-enabled breeding strategy, with particular attention to 48 favorable alleles related to fiber phenotypes that have been subjected to purifying selection during domestication. Our work delineates the dynamics of gene regulation during fiber development and highlights the potential of subgenomic coordination underpinning phenotypes in polyploid plants. [Abstract copyright: © 2023. The Author(s).

    Jet Impingement Heat Transfer Characteristics with Variable Extended Jet Holes under Strong Crossflow Conditions

    No full text
    In this paper, detailed flow patterns and heat transfer characteristics of a jet impingement system with extended jet holes are experimentally and numerically studied. The jet holes in the jet plate present an inline array of 16 × 5 rows in the streamwise (i.e., the crossflow direction) and spanwise directions, where the streamwise and spanwise distances between adjacent holes, which are normalized by the jet hole diameter (xn/d and yn/d), are 8 and 5, respectively. The jets impinge onto a smooth target plate with a normalized distance (zn/d) of 3.5 apart from the jet plate. The jet holes are extended by inserting stainless tubes throughout the jet holes and the extended lengths are varied in a range of 1.0d–2.5d, depending on the jet position in the streamwise direction. The experimental data is obtained by using the transient thermochromic liquid crystal (TLC) technique for wide operating jet Reynolds numbers of (1.0 × 104)–(3.0 × 104). The numerical simulations are well-validated using the experimental data and provide further insight into the flow physics within the jet impingement system. Comparisons with a traditional baseline jet impingement scheme show that the extended jet holes generate much higher local heat transfer levels and provide more uniform heat transfer distributions over the target plate, resulting in the highest improvement of approximately 36% in the Nusselt number. Although the extended jet hole configuration requires a higher pumping power to drive the flow through the impingement system, the gain of heat transfer prevails over the penalty of flow losses. At the same pumping power consumption, the extended jet hole design also has more than 10% higher heat transfer than the baseline scheme

    Jet Impingement Heat Transfer Characteristics with Variable Extended Jet Holes under Strong Crossflow Conditions

    No full text
    In this paper, detailed flow patterns and heat transfer characteristics of a jet impingement system with extended jet holes are experimentally and numerically studied. The jet holes in the jet plate present an inline array of 16 × 5 rows in the streamwise (i.e., the crossflow direction) and spanwise directions, where the streamwise and spanwise distances between adjacent holes, which are normalized by the jet hole diameter (xn/d and yn/d), are 8 and 5, respectively. The jets impinge onto a smooth target plate with a normalized distance (zn/d) of 3.5 apart from the jet plate. The jet holes are extended by inserting stainless tubes throughout the jet holes and the extended lengths are varied in a range of 1.0d–2.5d, depending on the jet position in the streamwise direction. The experimental data is obtained by using the transient thermochromic liquid crystal (TLC) technique for wide operating jet Reynolds numbers of (1.0 × 104)–(3.0 × 104). The numerical simulations are well-validated using the experimental data and provide further insight into the flow physics within the jet impingement system. Comparisons with a traditional baseline jet impingement scheme show that the extended jet holes generate much higher local heat transfer levels and provide more uniform heat transfer distributions over the target plate, resulting in the highest improvement of approximately 36% in the Nusselt number. Although the extended jet hole configuration requires a higher pumping power to drive the flow through the impingement system, the gain of heat transfer prevails over the penalty of flow losses. At the same pumping power consumption, the extended jet hole design also has more than 10% higher heat transfer than the baseline scheme

    Effect of droplet characteristics on heat transfer of mist/air cooling in a pin-finned channel

    No full text
    Effects of droplet characteristics of mist/air cooling on heat transfer for three pin-fin structures are investigated. The round-tip pin-fin structure is newly proposed with partial detachment from one endwall with a round-shaped tip structure. A flat-tip pin-fin with partial detachment and a traditional pin-fin with full attachment serve as references. Reynolds-averaged Navier-Stokes equations and the shear-stress-transport turbulence model are applied. Influences of initial mist temperature, initial mist diameter and initial mist velocity are analyzed in the Reynolds number range 15,000 to 50,000. The round-tip pin-finned channel has highest heat transfer coefficient and lowest pressure loss among the structures. Heat transfer enhancement increases first gradually and then decreases sharply with increasing initial mist diameter but an optimal diameter exists for the highest Nusselt numbers. Nusselt number decreases monotonically with increasing initial mist temperature. Droplet movement and heat transfer are nearly independent of initial mist velocity
    corecore