1,645 research outputs found

    Physical Layer Security in Wireless Ad Hoc Networks Under A Hybrid Full-/Half-Duplex Receiver Deployment Strategy

    Full text link
    This paper studies physical layer security in a wireless ad hoc network with numerous legitimate transmitter-receiver pairs and eavesdroppers. A hybrid full-/half-duplex receiver deployment strategy is proposed to secure legitimate transmissions, by letting a fraction of legitimate receivers work in the full-duplex (FD) mode sending jamming signals to confuse eavesdroppers upon their information receptions, and letting the other receivers work in the half-duplex mode just receiving their desired signals. The objective of this paper is to choose properly the fraction of FD receivers for achieving the optimal network security performance. Both accurate expressions and tractable approximations for the connection outage probability and the secrecy outage probability of an arbitrary legitimate link are derived, based on which the area secure link number, network-wide secrecy throughput and network-wide secrecy energy efficiency are optimized respectively. Various insights into the optimal fraction are further developed and its closed-form expressions are also derived under perfect self-interference cancellation or in a dense network. It is concluded that the fraction of FD receivers triggers a non-trivial trade-off between reliability and secrecy, and the proposed strategy can significantly enhance the network security performance.Comment: Journal paper, double-column 12 pages, 9 figures, accepted by IEEE Transactions on Wireless Communications, 201

    Zoom-VQA: Patches, Frames and Clips Integration for Video Quality Assessment

    Full text link
    Video quality assessment (VQA) aims to simulate the human perception of video quality, which is influenced by factors ranging from low-level color and texture details to high-level semantic content. To effectively model these complicated quality-related factors, in this paper, we decompose video into three levels (\ie, patch level, frame level, and clip level), and propose a novel Zoom-VQA architecture to perceive spatio-temporal features at different levels. It integrates three components: patch attention module, frame pyramid alignment, and clip ensemble strategy, respectively for capturing region-of-interest in the spatial dimension, multi-level information at different feature levels, and distortions distributed over the temporal dimension. Owing to the comprehensive design, Zoom-VQA obtains state-of-the-art results on four VQA benchmarks and achieves 2nd place in the NTIRE 2023 VQA challenge. Notably, Zoom-VQA has outperformed the previous best results on two subsets of LSVQ, achieving 0.8860 (+1.0%) and 0.7985 (+1.9%) of SRCC on the respective subsets. Adequate ablation studies further verify the effectiveness of each component. Codes and models are released in https://github.com/k-zha14/Zoom-VQA.Comment: Accepted by CVPR 2023 Worksho
    • …
    corecore