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ABSTRACT

There is a long history of debate on the usefulness of climate model–based seasonal hydroclimatic forecasts

as compared to ensemble streamflow prediction (ESP). In this study, the authors use NCEP’s operational

forecast system, the Climate Forecast System version 2 (CFSv2), and its previous version, CFSv1, to in-

vestigate the value of climate models by conducting a set of 27-yr seasonal hydroclimatic hindcasts over the

conterminous United States (CONUS). Through Bayesian downscaling, climate models have higher squared

correlation R2 and smaller error than ESP for monthly precipitation, and the forecasts conditional on ENSO

have further improvements over southern basins out to 4 months. Verification of streamflow forecasts over

1734U.S. Geological Survey (USGS) gauges shows that CFSv2 hasmoderately smaller error thanESP, but all

three approaches have limited added skill against climatology beyond 1 month because of overforecasting or

underdispersion errors. Using a postprocessor, 60%–70% of probabilistic streamflow forecasts are more

skillful than climatology. All three approaches have plausible predictions of soil moisture drought frequency

over the central United States out to 6 months, and climate models provide better results over the central and

eastern United States. The R2 of drought extent is higher for arid basins and for the forecasts initiated during

dry seasons, but significant improvements from CFSv2 occur in different seasons for different basins. The R2

of drought severity accumulated over CONUS is higher during winter, and climate models present added

value, especially at long leads. This study indicates that climate models can provide better seasonal hydro-

climatic forecasts than ESP through appropriate downscaling procedures, but significant improvements are

dependent on the variables, seasons, and regions.

1. Introduction

Although there is a theoretical threshold of about 2

weeks in weather prediction due to the chaotic nature of

the climate system, forecasting seasonal climate is po-

tentially possible because of additional memory impar-

ted from the slowly evolved components such as ocean

and land through land–atmosphere–ocean interaction.

In fact, seasonal forecasting became popular in the

1970s, when people started to notice the relationship

between the Southern Oscillation (SO) and El Ni~no

(Troccoli 2010) and their corresponding changes in the

strength of trade winds, position of convection, and

teleconnection patterns that cause rainfall variations in

many parts of the world. With gradual improvements in

observations and assimilation systems, physical param-

eterizations, spatial resolutions, and the understandings

of ENSO-related ocean–atmosphere interaction, the

coupled atmosphere–ocean–land general circulation

models (CGCMs) now have higher ENSO prediction

skill than statistical models (Barnston et al. 2012). The

recent investments in decadal prediction will further

benefit seasonal forecast thanks to similar development

strategies (Goddard et al. 2012).

The progress in dynamical seasonal forecasts provides

a potential opportunity to predict hydroclimatic vari-

ables (e.g., precipitation, streamflow, soilmoisture) at long

lead times, which is important for agriculture and water

resourcesmanagement, drought detection, andmitigation.

In this context, climate model–based seasonal hydro-

climatic forecasting plays an important role in transition-

ing the scientific advances from the hydroclimatic research

community to the end users of society. On the other hand,

the increasing service needs from the society also bring

new challenges to the scientific community and will

stimulate and accelerate the development of climate

prediction as well as seasonal hydroclimatic forecast.

One of the first attempts to produce seasonal hydro-

climatic forecast by using CGCM output was made
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by Wood et al. (2002). They implemented an equal-

quantile mapping method to bias correct and downscale

seasonal forecasts of monthly precipitation and 2-m air

temperature from National Centers for Environmental

Prediction (NCEP) Global Spectral Model (GSM) and

used the downscaledmonthly forcings to scale randomly

selected daily series. Then the scaled series were used as

input to drive a hydrologic model to provide forecasts

over the eastern United States in the summer of 2000

andwinter of 1997/98. Later,Wood et al. (2005) assessed

the hydroclimatic forecast skill over western United

States during 1979–99. They found that CGCM-based

seasonal hydroclimatic forecast could propagate climate

forecast signals into hydrologic variables in a qualitative

perspective but had negligible skill improvement over

the traditional ensemble streamflow prediction (ESP;

Twedt et al. 1977) method. ESP is based on resampling

of the historical climate forcings that are used as inputs

to a hydrologic model with nowcast initial conditions,

which indicates that seasonal streamflow forecast is es-

sentially reduced to an initial value problem in their

western U.S. cases. Luo and Wood (2008) utilized a

Bayesian method (Luo et al. 2007) to merge climate

forecasts of multiple CGCMs from NCEP and Euro-

pean Union Development of a European Multimodel

Ensemble System for Seasonal-to-Interannual Predic-

tion (DEMETER) project and conducted a 19-yr sea-

sonal hydroclimatic forecast over the Ohio River basin

in the eastern United States. The multimodel forecast

was more skillful than the ESP forecast during the first

two months. However, the advantage was marginal to

moderate if only using one CGCM, such as NCEP’s

Climate Forecast System version 1 (CFSv1; the succes-

sor to GSM). Therefore, even though some pilot studies

have been carried out for CGCM-based seasonal hy-

droclimatic prediction, the relatively low forecast skill is

still an unresolved question.

Similar to the short-term river forecast (Schaake et al.

2007), skillful CGCM-based seasonal hydroclimatic

forecast relies on accurately downscaled CGCM pre-

cipitation and temperature predictions, refined initial

hydrologic conditions that contain additional memory

(e.g., soil moisture, snow), and advanced land surface

hydrologic models that reasonably represent the ter-

restrial water and energy budgets. After decades of de-

velopment, land surface hydrologic models have been

successfully implemented at local, regional, and global

scales. Moreover, the uncertainty from hydrologic

models can be reduced substantially through parameter

calibration and regionalization procedures (Duan et al.

2006). Besides the development of hydrologic models,

the role of initial conditions on the seasonal hydrologic

forecast has been receiving more attention recently (Li

et al. 2009; Koster et al. 2010; Shukla and Lettenmaier

2011). One of the routine ways to generate initial con-

ditions for operational hydrologic nowcast and forecast

is to run the hydrologic model with antecedent climatic

observations (Wood et al. 2002; Luo and Wood 2008;

Xia et al. 2012), though more complicated methods such

as satellite data assimilation might be possible (Crow

and Wood 2003; Pan et al. 2008).

Unlike the uncertainties from initial conditions and

hydrologic models that could be constrained in a rela-

tively acceptable extent, the uncertainties from climate

forecast models seem to be themajor sources for the low

skill in seasonal hydroclimatic forecasting. The large

uncertainty from GCGM precipitation prediction raises

the question whether seasonal hydrologic forecast

should be treated as an initial value problem in the hy-

drologic community. In other words, is there any added

value from a CGCM-based seasonal hydrologic forecast

against the traditional ESP forecast? The answer may

differ by region and season. Therefore, with the gradual

improvement of CGCMs, it is necessary to conduct

comprehensive seasonal hydroclimatic reforecasts and

to investigate whether or howmuch of the improvement

from climate forecast models result in improved skill in

the seasonal hydroclimatic forecasts and whether the

state-of-the-art CGCM-based streamflow and drought

forecasts outperform those from ESP forecasts.

Recently, NCEP has upgraded their operational sea-

sonal forecast system with a new CGCM, the second

version of CFS (CFSv2), where a number of new phys-

ical packages and a new atmosphere–ocean–land data

assimilation system have been incorporated (Saha et al.

2010). Yuan et al. (2011) assessed the surface air tem-

perature and precipitation predictions, and found that

CFSv2 achieved significant improvement against CFSv1.

Here, we use a Bayesian merging method (Luo et al.

2007) to bias correct and downscale the temperature and

precipitation reforecasts from CFSv1 and CFSv2, which

are then used as inputs to the Variable Infiltration Ca-

pacity (VIC; Liang et al. 1996) land surface model to

generate hydrologic forecasts over the conterminous

United States (CONUS) during 1982–2008. For com-

parison, a parallel run using the ESP forecast method is

also carried out. Systematic evaluations of hydroclimatic

variables such as precipitation, streamflow, and soil

moisture are conducted to investigate the role of climate

forecast models and initial conditions in seasonal flood

and drought forecasting.

This paper is arranged as follows: Section 2 introduces

observational data, climate and hydrologic models, the

downscaling method, and the experimental design.

Section 3 assesses the skill of downscaled precipitation

forecasts. Sections 4 and 5 verify the seasonal streamflow
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and soil moisture drought predictions, and the discussion

and summary are given in sections 6 and 7, respectively.

2. Data, models, and experimental design

a. Climate forecast models and reforecast data

CFSv1 is a fully coupled ocean–land–atmosphere dy-

namical seasonal prediction system, which became op-

erational at NCEP in 2004 (Saha et al. 2006). It consists

of the NCEP Global Forecast System (GFS) at T62L64

(;1.8758) resolution, the Geophysical Fluid Dynamics

Laboratory (GFDL) Modular Ocean Model version 3.0

(MOM3) at 1/38–18 grid spacing, and the two-layer Ore-

gon State University (OSU) land surface model. The

monthly CFSv1 reforecasts during 1981–2008 are used in

this study, with 15 ensemble members for each target

month. The first and second five-member groupings

have initial dates within the 9th–13th and the 19th–23rd

of the month before target month, and the last five

members have initial dates between the second-to-last

day of the month before the target month and the 3rd of

the target month (Saha et al. 2006).

CFSv2 used in the reforecast consists of the NCEP

GFS at T126 (;0.9388) resolution, the GFDLMOM4 at

0.258–0.58 grid spacing coupled with a two-layer sea ice

model, and the four-layer Noah land surface model

(Saha et al. 2010). The 28-yr (1982–2009) monthly en-

semble reforecasts with 24 ensemble members are now

available at NCEP and National Climatic Data Center

(NCDC). Beginning on 1 January, 9-month reforecasts

are initiated every 5 days with 4 cycles on those days.

NCEP compiled the monthly estimates as follows: for

each calendar month, the reforecasts with initial dates

after the 7th of that month are used as the ensemble

members of the next month. For instance, the starting

dates for the February ensemble members are 11, 16, 21,

26, and 31 January and 5 February (Yuan et al. 2011).

NCEP has been producing real-time seasonal forecast

using CFSv2 since 30 March 2011.

b. Hydrologic models and initial conditions

The VIC model (Liang et al. 1996) version 4.0.5 is

used to predict soil moisture and runoff in this study. It

is a semidistributed, grid-based hydrologic model with

a mosaic representation of land cover and soil water

storage capacity. Although there are several newer

versions of VIC model, the version 4.0.5 is used as the

core land surface model for our hydroclimatic fore-

casting system and in this study, because it has been

recoded to image mode (i.e., to use flat spatial forcing

files at each time step), which is the most suitable form

for forecasting. Nonetheless, there is hope to update a

newer VIC version to image mode in the future. By using

the efficient calibration method of Troy et al. (2008), we

recalibrated the soil parameters for the water-budget

version of VIC model grid by grid with runoff ratio data

derived from over 1700 U.S. Geological Survey (USGS)

gauges (J. K. Roundy et al. 2012, unpublished manu-

script). In the water budget mode, only the daily preci-

pitation, maximum and minimum air temperature, and

surface wind are needed to drive the model. Runoff

generated within a grid cell is routed to the stream gauge

location using a linear routing model developed by

Lohmann et al. (2004).

Although a hydrologic model can reach equilibrium

after a few years, in this study, the VIC and routing

models are spun up from 1949 to 1979 using the Uni-

versity of Washington (UW) observed forcing data of

Maurer et al. (2002) and then forced by National Land

Data Assimilation System (NLDAS-2) data (Xia et al.

2012) over 1980–2008 to generate initial conditions for

the seasonal hydrologic forecasts. The UW and NLDAS-

2 data cover the periods 1949–2000 and 1979–present,

respectively. The datasets were not blended during their

overlapping period (1979–2000) because of differences

between the two datasets. Based on the multiyear (1979–

2000) mean statistics, we found that the two datasets

disagree in precipitation for some grid cells over Rocky

and Appalachian Mountain regions; NLDAS-2 provides

systematically higher 2-mmaximum air temperature than

UW data over central United States and higher 2-m

minimum air temperature than the latter throughout

most of CONUS. Given that our hindcast period is 1982–

2008, all the initial hydrologic conditions are consistently

generated from the NLDAS-2-driven simulation, and

the soil moisture drought evaluation in section 5 is also

based on the same simulation. We believe there is lim-

ited impact from using UW data during the spinup

(1949–79) on the initial conditions and hydrologic sim-

ulation because of the 2-yr transition period (1980–81)

with NLDAS-2 and an improvement (especially for

deeper soil moisture stores) to the spinup only using 3-yr

(1979–81) NLDAS-2 data. Although using both datasets

to construct the climatology in the Bayesian downscal-

ing and ESP as described in section 2c is suboptimal,

both the climate model–based approach and ESP are

based on the same merged data, making their compari-

sons consistent.

c. Bayesian downscaling and experimental design

Figure 1 is the flowchart of the seasonal hydroclimatic

forecast system. Monthly precipitation and temperature

reforecasts during 1982–2008 from CFSv1 and CFSv2

are bias corrected and downscaled to 1/88 over CONUS

using the Bayesian merging method of Luo et al. (2007).
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For each calendar month, all ensemble members of cli-

mate forecasts (15 from CFSv1 and 24 from CFSv2) are

used to construct a cumulative distribution function

(CDF) of the forecasts. The 31-yr (1949–79) UW forc-

ing, merged with the 31-yr (1980–2010) NLDAS-2 ob-

servations in that calendar month, are used to construct

a CDF of observations. Both CDFs are then trans-

formed to normal space through quantile-mapping. A

linear regression function between the transformed ob-

servation and ensemble mean of the forecast is fitted to

create the likelihood function in the Bayesian method.

The regression procedure is repeated 100 times and each

time the data in the target year and two other random

years are excluded for cross validation, and then the

average coefficients are computed for the likelihood

function. Consequently, the posterior distribution in the

normal space is obtained using the likelihood function,

the target forecast, and a prior forecast based on 62-yr

observation climatology (UW merged with NLDAS-2).

The resulting posterior distribution is finally transformed

back to its original space through the same quantile

mapping. In Luo et al. (2007), the posterior variance

consists of both linear regression error and the ensemble

spread, while in this study, to improve the interannual

variability of the downscaled climate forcings, we drop

the ensemble spread part in posterior variance accord-

ing to the work of Yoon et al. (2012).

With the mean and variance of the posterior distri-

bution for the spatially downscaled monthly variables,

a hybrid method including both the historical-analog

criterion and random selection is used to generate 20

daily time series (Luo andWood 2008). In the historical-

analog criterion, 10 historical daily forcings that have

similar spatiotemporal patterns to the mean of posterior

distribution are selected. To avoid overconfident fore-

casts, another 10 daily series are randomly selected from

history. In Luo andWood (2008), they adjusted the daily

series by matching the observation distribution with

forecast distribution. In that manner, the rank structure

of historical observations is retained but not their actual

FIG. 1. Flowchart of the seasonal hydroclimatic forecast system including data and methodology.
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values. However, we find that such a matching method

causes obvious bias when the forecast distributions sig-

nificantly deviate from observations. Therefore, we use

a simple scaling method to adjust the resulted series ac-

cording to the monthly ensemble mean of the posterior

distribution. For the ESP experiment, the 20-member

ensemble forcings are randomly chosen from the 62-yr

merged data, excluding the target year.

Based on the downscaled climate forcings fromCFSv1

and CFSv2, randomly selected forcings through the ESP

procedure, and the initial conditions from the offline

simulation, we use VIC model to produce 6-month, 20-

member ensemble hydrologic forecasts over CONUS

starting on the 1st of each calendar month during 1982–

2008. This is equivalent to 9720-yr VIC simulation at 1/88
over CONUS. As introduced in section 2a, some en-

semble members of CFSv1 and v2 are about 20 days old

at the beginning of the target month. Therefore, here-

after, we call the month-1 forecast as forecast at 0.5-

month lead, the month-2 forecast as 1.5-month lead, and

so on.

3. Predictive skill of downscaled precipitation

To have an overview of the performance in the deter-

ministic forecast, we calculate the squared correlation R2

(coefficient of determination), for basin-averaged en-

semble mean monthly precipitation. For each season,

ensemble mean values of monthly precipitation from

downscaled climate forecasts or ESP during 1982–2008

are compared to the corresponding observations by

plotting a scatterplot and then calculating R2. The R2

values represent the fraction of variance explained by

the forecasts.

The differences in R2 for the ensemble mean monthly

precipitation at 0.5-month lead (month-1 forecast)

between the downscaled CFSv1/CFSv2 forecasts and

ESP are shown in Fig. 2 for 14 large basins (numbered in

Fig. 2b). These basins will be used throughout the re-

mainder of this paper to compare the spatial differences

in the forecast predictions. A summary of the basin

characteristics is provided in Table 1, including a list of

basin area and wet–dry seasons. CFSv1 shows generally

higher predictive skill than ESP over the 14 large basins,

except for lower Mississippi during winter and summer

(Figs. 2a,e), NE during spring and fall (Figs. 2c,g), and

the Ohio basin during winter (Fig. 2a). A common fea-

ture for the degradation is that they do not happen in

wet or dry seasons (Table 1), indicating some challenges

in predicting precipitation during transition seasons

over those regions.Most of the significant improvements

beyond ESP occur in wet seasons for the Great Lakes

region (Fig. 2e),Ohio (Fig. 2c), upperMississippi (Fig. 2e),

Missouri (Fig. 2e), and south central (Fig. 2g) in the

eastern and central United States. For the western

United States, only the California region shows obvious

improvement during wet seasons (Fig. 2a). As compared

with CFSv1, CFSv2 improves predictive skill over many

regions, especially during winter and spring (Figs. 2b,d).

Unlike CFSv1, which shows lower skill than ESP in

some regimes, CFSv2 shows consistent improvement

against ESP throughout CONUS for all seasons. In

particular, CFSv2 has significantly higher skill than ESP

(R2 difference larger than 0.05) during wet seasons for

every large basin, except for the SE (Fig. 2f). Note that,

in this study, we downscale the climate forecasts to 1/88
for the inputs to the hydrologic model and then aggre-

gate them to large basins to have a general assessment

before evaluating their impact on hydrologic forecasts.

Thus, we can expect higher skill if we downscale the

basin-averaged forecasts directly because of higher skill

for climate model forecasts over larger domains.

Besides the R2, the evolution of root-mean-square er-

ror skill score (SSRMSE) for the ensemble mean monthly

precipitation at different lead times is also analyzed

(Fig. 3). The SSRMSE is defined as 12 (RMSE/RMSEESP),

where RMSE and RMSEESP are the root-mean-square

error for climate models (CFSv1/CFSv2) and ESP, re-

spectively. Here, SSRMSE 5 1 indicates perfect forecast,

while SSRMSE less than zero means the CFSv1 or CFSv2

forecast is worse than ESP. The solid thick lines in Fig. 3

demonstrate that skill scores are generally above zero

for the 14 basins over all leads, except for the long lead

forecasts inOhio (Fig. 3c) and California (Fig. 3n). Thus,

the climate model forecasts have less error than ESP in

most cases. Most basins show obvious skill decline over

lead times in the first 2–5 months, while there are no

obvious declines in the NE (Fig. 3a) and Arkansas Red

(Fig. 3h). The abnormal increase in skill at long leads is

due to the seasonal variation of precipitation that sig-

nificantly affects the magnitude of errors for the models

and ESP, and should be interpreted as noise. For the first

month forecasts, CFSv2 has significantly higher skill

than CFSv1 over 9 (Figs. 3a,c,d,f,g,i–l) of the 14 large

basins; lower skill over Great Lakes region (Fig. 3b) and

upper Mississippi (Fig. 3e); and comparable skill over

Arkansas Red, Great Basin (Fig. 3m), and California.

Wood et al. (2005) investigated the influence of ENSO

on the skill of basin-averaged precipitation over western

United States. Here we also compare the unconditional

SSRMSE calculated using all forecasts with SSRMSE con-

ditional on the forecasts having strong Ni~no-3.4 SST

anomalies (.1.0 K) 1 month before the target initiation

month. For instance, for all 6-month forecasts starting

from December, we selected the forecasts if there is

a strong SST anomaly in November. Figure 3 shows that
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not all basins over CONUS are positively affected by

ENSO, such as Missouri and Arkansas Red (Figs. 3g,h).

However, the forecasts conditional on ENSO do have

significantly higher skill than the unconditional forecasts

over the SE (Fig. 3d), Colorado (Fig. 3k), and California

(Fig. 3n) in the first 3–4 months, indicating the positive

effects of tropical Pacific SST anomalies on precipitation

forecasts through teleconnections.

The above results are based on deterministic and

basin-scale analysis. To evaluate probabilistic and grid-

scale precipitation forecast skill, we use the ranked

probability skill score (RPSS; Wilks 2011) defined as

1 2 (RPS/RPSESP), where RPS and RPSESP are the

ranked probability scores for CFSv1/CFSv2 forecasts

and ESP, respectively. RPSS is quite similar to SSRMSE,

except that the former is based on multicategory prob-

abilistic forecasts using all ensemble members. In this

study, we classify monthly precipitation into three cat-

egories, small (,33th percentile), median, and heavy

(.67th percentile), based on the climatological distri-

butions for each calendar month using observations. We

calculate RPSS grid by grid and then compute the per-

centages of forecasts with positive values: that is, per-

centages of forecasts that are more skillful than ESP.

FIG. 2. Differences in squared correlationR2 of basin-averaged ensemblemeanmonthly precipitation at 0.5-month

lead between downscaled climate forecasts and ESP: (top to bottom)DJF–September to November (SON) and (left)

CFSv1 and (right) CFSv2.
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The results for different seasons and all months (ANN)

are shown in Fig. 4. It is found that generally more than

50%–60% of climate forecasts are more skillful than

ESP over 14 basins in different seasons for different

leads. Unlike the RMSE analysis for basin-averaged

ensemble mean precipitation, there is no clear decline of

RPSS over lead times except in the first 2 months. This

might be due to the low skill of climate models at local

scales after the first month forecasts. Thus, the down-

scaled forecasts tend to approximate the prior distribu-

tion: that is, the climatological distribution, which is

similar to ESP. Therefore, though there are some skill

enhancements beyond ESP at long leads [e.g., June–

August (JJA) forecasts over NE], they are random score

excursions. Focusing on the first month forecasts, CFSv2

hasmoderate improvements against CFSv1 for the annual

average results (Fig. 4, right column). The improvements

are obvious in the wet seasons for some humid basins,

such as NE, Ohio, and Columbia, which is encouraging

since heavy rainfall is more challenging for categorical

forecasts.

4. Verification of streamflow forecast

Before using the ESP generated or downscaled forcings

to drive the hydrologicmodel, we evaluated the capability

of the recalibrated VIC model in capturing interannual

variations of streamflow given observed forcings. The

Nash–Sutcliffe efficiency (NSE) coefficients for monthly

streamflow are calculated at 1734 USGS gauges for the

offline observation-driven simulation during 1982–2009,

and the results are shown in Fig. 5. The gauges used in this

study cover most of the eastern United States and West

Coast area. The drainage areas vary from 140 (the area

of a 1/88 grid cell) to 525 768 km2.All gauges have at least

5 yr of streamflow records, and the average fraction of

missing data is about 9%. To fill the missing values, we

use offline simulated streamflow and all available gauge

records to fit a linear regression function and then use it

to estimate the missing observation based on offline

simulation. This procedure is similar to Dai et al. (2009),

but here the regression is being used regardless of the

significance of the regression (Pan et al. 2012). The filled

streamflow observations are used to calculate NSE and

other forecast verifications. Figure 5 shows that most

gauges have NSE. 0.7 in the eastern and western parts

of the country and some gauges haveNSE, 0.5 over the

central United States. Note that all 1734 gauges used in

this study have NSE . 0.3 based on the records with

unfilled observations.

With downscaled forcings and offline simulated initial

conditions, 6-month hydrologic forecasts starting from

the 1st of each calendar month in each year are carried

out over CONUS during 1982–2008. Given the limited

skill of precipitation after one season, streamflow anal-

ysis is only carried out for the first 3 months in this study.

Figure 6 shows the SSRMSE for ensemble mean monthly

streamflow from climate model–based forecasts. Similar

to the precipitation analysis, the streamflow from ESP is

used as the reference forecast. During the first month,

CFSv1 and CFSv2 havemoderate improvements against

ESP over most watersheds, with high skill score (.0.1)

occurring over California (Figs. 6a,b) and some over the

Ohio basin for CFSv2. Based on the skill scores aver-

aged over the 14 large basins, CFSv2 reduces RMSE for

streamflow forecasts from ESP by about 4%–7% in the

eastern United States and less than 4% over the west,

and the errors are reduced by 10% over California. In

the second and third months, climate model–based

forecasts are comparable to the ESP at more gauges

(Figs. 6c–f: green dots). The large basin-averaged skill

scores indicate that the error reductions are below 3%

TABLE 1. Information for the 14 large basins. Wet and dry seasons (DJF, MAM, JJA, and SON) are determined by 27-yr (1982–2008)

areal-averaged precipitation observations.

Basin Full name Area (km2) Wet season (mm day21) Dry season (mm day21) No. of gauges

1. NE Northeast 392 420 JJA (3.20) DJF (2.64) 279

2. GL Great Lakes 482 020 JJA (2.86) DJF (1.27) 147

3. Ohio Ohio 494 060 MAM (3.46) SON (2.75) 263

4. SE Southeast 601 440 JJA (4.34) SON (3.05) 283

5. UMiss Upper Mississippi 451 080 JJA (3.38) DJF (0.99) 192

6. LMiss Lower Mississippi 290 640 MAM (4.00) SON (3.25) 73

7. Misso Missouri 1 311 520 JJA (2.17) DJF (0.62) 101

8. AkRed Arkansas Red 534 380 JJA (2.59) DJF (1.23) 53

9. SC South Central 393 680 SON (2.36) DJF (1.61) 57

10. RioG Rio Grande 311 080 JJA (1.57) DJF (0.58) 7

11. Color Colorado 590 800 JJA (1.04) MAM (0.81) 52

12. Colum Columbia 724 920 DJF (3.51) JJA (1.04) 130

13. GB Great Basin 356 020 DJF (1.05) JJA (0.58) 19

14. Calif California 393 680 DJF (3.22) JJA (0.25) 78
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(except the 1.5-month forecasts over California), and

CFSv1 is slightly worse than ESP over the Ohio basin.

The blue dots indicate that, although there are some

promising forecast results for large basin-averaged pre-

cipitation, streamflow forecasts over some small catch-

ments are still quite challenging.

Similar to the precipitation analysis, we also calculate

probabilistic skill score for the monthly streamflow

forecasts. Table 2 lists the percentages of positive RPSS

for the streamflow forecasts averaged over the 14 large

basins. For the 0.5-month lead, 57%–76% of the CFSv1

forecasts and 60%–77% of the CFSv2 forecasts over

different large basins are more skillful than ESP, respec-

tively. Figure 6c shows that there are negative SSRMSE at

some gauges over Ohio basin for CFSv1 at 1.5-month

lead, and Table 2 also illustrates that CFSv1 is compa-

rable or slightly worse than ESP over Ohio beyond 1

month. For CFSv2, the skill also decreases over lead

FIG. 3. The SSRMSE for basin-averaged ensemble meanmonthly precipitation from downscaled CFSv1 and CFSv2 forecasts at different

leads based on unconditioned (all forecasts; solid thick lines) and ENSO conditioned (forecasts having Ni~no-3.4 SST anomaly. 1.0 K at

1 month before the target initiation month; dashed thin lines) for (a)–(n) the 14 basins. The reference is ESP.
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times, but at least more than 51% of the forecasts are

more skillful than ESP for each large basin.

As shown in Table 2, climate model–based streamflow

forecasts havemore advantages against ESP overwestern

basins than those over the east. For instance, climate

models havemore than 60%of the skillful forecasts over

south central, Rio Grande, Colorado, Great Basin, and

California out to 3 months. Does that mean the climate

model–based streamflowprobabilistic forecasts have higher

accuracy over arid/semiarid regions (western United

States)? To answer the question, we calculate the percen-

tages of positive RPSS for ESP, CFSv1, and CFSv2 against

the climatological forecasts. Here the climatological fore-

casts for each calendar month are constructed by using all

historical USGS observations in the same month except

the target year as ensemblemembers. Figures 7a1–n1 show

that all three approaches have more skill against clima-

tological forecasts over the eastern humid basins than

FIG. 4. Percentages of skillful probabilistic forecasts (RPSS. 0) averaged over (top to bottom) the 14 basins for downscaled CFSv1 and

CFSv2 monthly grid-scale precipitation at different leads for (left to right) DJF–ANN. The reference is ESP.
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those over western arid basins. Therefore, although

CFSv1 and v2 have more advantage against ESP over

arid regions, their forecasting skill is still quite low.

Figures 7a1–n1 also demonstrate that the three fore-

casting approaches are comparable to or even poorer than

the climatological forecasts overmost basins at 1.5-month

lead, which might come from systematic errors of hy-

drologic models or underestimated uncertainties from

initial conditions. For example, Yuan andWood (2012a)

found underforecasting or underdispersion errors for

climate model–based ensemble streamflow forecasts

over 50 gauges in the Ohio basin based on the analysis of

verification rank histograms (Wilks 2011). So, following

that work, we also use them to verify the ensemble char-

acteristics in this study. The rank histograms for each basin

are plotted in Fig. 8. Given that there are 20 ensemble

members for each forecast, rank 1 represents the propor-

tion of the forecasts with all 20 ensemble members larger

than the observation, rank 2 represents the proportion of

the forecasts with 19 members larger than the observation

and one member smaller than the observation, and rank

21 represents the proportion of the forecasts with all 20

members smaller than the observation. Ideally, the rank

histogram should be uniform. For simplicity, we only show

the histograms for the month-2 CFSv2 streamflow fore-

casts, although the histograms slightly differ at different

leads and among different forecasting approaches. Similar

to Yuan and Wood (2012a), Fig. 8 shows that CFSv2 has

underdispersion errors in many basins, especially over the

western United States. (Fig. 8k–n), which indicates that

the ensemble members are too similar to each other, dif-

ferent from verification, and the ensemble forecast is too

sharp. CFSv2 also has overforecasting biases over arid–

semiarid basins, where more than 25% of the forecasts

having all ensemble members systematically larger than

observations (Figs. 8i–k,m,n). These systematic biases

make CFSv2 worse than the climatological forecasts over

south central, Columbia, andCalifornia at 1.5-month lead

(Figs. 7i1,l1,n1). For the humid basins, CFSv2 is worse

than climatological forecasts over the Great Lakes

(Fig. 7b1) andOhio (Fig. 7c1), due to the underdispersion

(Fig. 8b) and overforecasting (Fig. 8c) errors, respectively.

To correct the above errors, Yuan and Wood (2012a)

proposed a postprocessing procedure based on Bayesian

procedures. The Bayesian method is similar to Luo et al.

(2007) and is discussed in section 2c. In this section, it is

being applied to the monthly streamflow forecasts in-

stead of precipitation. The postprocessing procedure is

applied to the ESP, CFSv1, and CFSv2 forecasts by

matching CDFs of USGS streamflow observations

through cross validation, resulting in significant im-

provements. Figures 7a2–n2 show that, with the post-

processing, all three approaches have more than 60%

skillful forecasts against climatological forecasts out to

2months. The resulting rank histograms are also corrected

to approximately uniform distributions (not shown).

Therefore, postprocessing is essential for accurate and

reliable probabilistic streamflow forecasts. After post-

processing, CFSv1/CFSv2 forecasts are quite similar to

ESP over the upper Mississippi, Missouri, Rio Grande,

Great Basin, and California (Figs. 7e2,g2,j2,m2,n2) but

are better than ESP over the other nine basins.

5. Assessment of drought prediction

Besides evaluating the streamflow forecast, we also

assess the seasonal predictions of soil moisture drought.

Many previous studies focused on identifying and

FIG. 5. The NSE coefficients for monthly streamflow simulated by the recalibrated water-budget

VIC model at 1734 USGS gauges.
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characterizing historical soil moisture drought (Sheffield

et al. 2004; Andreadis et al. 2005; Wang et al. 2009)

and projecting future changes in drought occurrence

(Sheffield and Wood 2008; Dai 2011), but only a few

were dedicated to seasonal drought forecasts (Luo and

Wood 2007; Mo 2011; Yuan et al. 2011). In this study,

we assess the models’ capability in forecasting short-

term drought in terms of frequency, area, and severity.

Monthly percentiles for the forecasted and offline simu-

lated soil moisture are calculated for each grid cell based

on the climatology of a 31-yr (1980–2010) VIC offline

simulation. According toCPC’s drought classification, we

define drought occurrence when the soil moisture per-

centile is below 20%.

Figure 9 shows the ratio of forecasted over offline

simulated drought frequency averaged among all fore-

casts during 1982–2008. For the droughts that last for at

least 1 month (Fig. 9, first row), more than 80% of them

are captured by ESP forecasts over central United

States; 60%–70% are captured over SE; and less than

50% can be predicted over NE, Ohio, and western coast

areas. CFSv1 has improved forecasts over the lower

Mississippi and California, while CFSv2 has even further

enhancements, especially over the eastern United States.

For the 2-month-duration droughts (Fig. 9, second row),

offline simulation indicates that the occurrence frequency

of these events is less than 10% over eastern United

States and Pacific Northwest. Thus, all three approaches

FIG. 6. The SSRMSE for ensemble mean monthly streamflow forecasts from (left) CFSv1 and (right) CFSv2 calculated at 1734 gauges for

(top to bottom) lead times of 0.5–2.5 months. The reference is ESP.
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have lower skill in forecasting them over these areas.

However, CFSv2 forecasts have a consistent improve-

ment over ESP and CFSv1 across the country. As the

drought duration increases from 3 to 6 months, the

chance of successfully forecasting their frequency de-

creases, especially in the eastern United States and West

Coast areas (Fig. 9, third and fourth rows). In contrast, all

three approaches have plausible performance in pre-

dicting drought frequency over central United States out

to 6 months.

Another important characteristic for drought is its

spatial extent. To assess the models’ capability in fore-

casting interannual variations of drought area, R2 is

calculated between forecasted and offline simulated

extents for each large basin. Figure 10 shows the R2 of

ESP forecasted drought area during 1982–2008, where

forecast lead in months is along the y axis and the target

or verification month is along the x axis, so the value of

July with 1.5-month lead is the predictive skill for July

drought area from the forecast that is initiated in June.

Similar to the frequency prediction above, ESP has

higher predictive skill for drought area over the basins in

central United States, such as the Missouri (Fig. 10g),

Rio Grande (Fig. 10j), and Colorado (Fig. 10k), and the

skill is generally lower over humid basins than the arid

basins. Given that there is no forecast information in the

climate forcings for the ESP method, its skill mostly

reflects the impact of initial soil moisture conditions on

drought prediction. In the Missouri and Colorado ba-

sins, ESP can predict more than 50% of the interannual

variations out to 3 months for the forecasts initiated

during December–February (DJF) and March–May

(MAM). These seasons are indeed their dry seasons

(Table 1), which indicates that soil moisture initial

condition may have more impact on the predictive skill

for the forecasts initiated during dry seasons over the two

basins. Other arid–semiarid basins (upper Mississippi,

Arkansas Red, south central, Rio Grande, Great Basin,

and California) also show higher predictive skill for

forecasts initiated fromdry seasons. However, it becomes

more complicated for the humid basins. The predictive

skill is higher for the forecasts initiated both during wet

and dry seasons over the northern humid basins, such as

the NE (Fig. 10a), Great Lakes (Fig. 10b), and Columbia

(Fig. 10l), while for the southern humid basins high pre-

dictive skill usually occurs in the forecasts initiated during

transition seasons, such as Ohio in JJA (Fig. 10c) and SE

and lower Mississippi in DJF (Figs. 10d,f).

To compare the climate model–based forecasts with

ESP in terms of predictive skill for drought area, the

differences in R2 are provided in Fig. 11. For the humid

basins, CFSv2 shows significant improvements for the

forecasts initiated during transition seasons over the NE

(Fig. 11a2) and the dry season over Ohio, SE, and lower

Mississippi (Figs. 11c2,d2,f2). For the arid–semiarid

basins, there are obvious improvements for wet season

over the Missouri (Fig. 11g2) and California (Fig. 11n2),

and for dry seasons over other basins (Figs. 11h2–k2).

CFSv1 is generally worse than CFSv2, except for JJA

over the Great Lakes and SE (Figs. 11b1,d1) and for

MAMover theArkansas Red (Fig. 11h1). Figure 11 also

shows that both CFSv1 and CFSv2 have lower predictive

skill than ESP for the forecasts over the lowerMississippi

in September (Figs. 11f1,f2), which might be due to noise

from the ESP. In fact, ESP has unexpectedly higher skill

at long leads than those at short leads for the forecasts in

September (Fig. 10f). The attribution of this anomaly is

unresolved at this time.

Besides the drought frequency and area, the pre-

dictive skill for drought severity is also evaluated. To

have a general comparison among three forecasting ap-

proaches over CONUS, we define the regional accumu-

lated severity S as S5�n
i51�

t
j51(12Pi,j), where n and

t represent that the number n of drought grid cells with

drought durations of t months and Pi,j is the monthly

percentile of soil moisture for a specific grid cell in

a specific drought month. Note that n and Pi,j may be

different between offline simulation and the forecasts;

thus, the defined S is used to quantify regional accu-

mulated soil water deficit during the drought period.

Figure 12 shows the predictive skill of S for three types

of forecasts over the CONUS region for different du-

rations. To be consistent with the 3-month-duration

droughts, which have four different leads based on

6-month forecasts, only the results with lead times up to

3.5 months are shown. The predictive skill of severity

tends to be higher during winter because of the strong

TABLE 2. Percentages (%) of positive RPSS for monthly

streamflow forecasts at 1734 gauges averaged over the 14 basins.

The reference is ESP.

Basin

0.5-month lead 1.5-month lead 2.5-month lead

CFSv1 CFSv2 CFSv1 CFSv2 CFSv1 CFSv2

1. NE 57 61 52 52 52 53

2. GL 58 60 54 54 52 53

3. Ohio 59 63 50 52 49 51

4. SE 59 62 54 56 53 54

5. UMiss 60 60 56 56 55 55

6. LMiss 59 62 54 55 54 55

7. Misso 64 66 59 60 56 57

8. AkRed 62 63 56 57 56 56

9. SC 70 71 62 63 61 62

10. RioG 76 76 68 69 61 62

11. Color 73 74 67 68 63 64

12. Colum 64 67 59 61 58 58

13. GB 76 77 70 70 66 66

14. Calif 74 75 70 70 67 68
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initial soil moisture control and/or better precipitation

prediction skill from the climate forecast models.

However, it is not as low as we expected during the

summer, while the lowest skill occurs during the spring

and fall. Therefore, the predictive skill for short-term

drought has different seasonal characteristics as compared

with precipitation, indicating the important role of initial

soil moisture condition in the forecasting. As compared

with ESP, climate models do offer added value, and their

advantages become clearer at long leads where there is

less impact from initial conditions. Although CFSv2 is

better than CFSv1 during the winter, summer, and fall

FIG. 7. Percentages of positive RPSS formonthly streamflow forecasts (a1)–(n1) without and (a2)–(n2) with postprocessing at 1734 gauges

averaged over the 14 large basins. The reference is climatological forecast.
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seasons, it is slightly worse than the latter during the

spring.

6. Discussion

The climate model–based seasonal hydroclimatic fore-

casts show visible skill enhancements against ESP, but

they also have certain deficiencies. For the precipitation

forecasts, although we know that models’ skill decreases

greatly after 1 month (Yuan et al. 2011), Figs. 2–4 show

that they have negligible improvement against ESP over

specific regions and seasons even for the month-1 fore-

casts, such as the R2 over southeastern basins during

summer (Figs. 2e,f). The current downscaling system

used in the study is based on the monthly mean pre-

cipitation, where the ensemble members have different

leads. For example, CFSv2 provides forecasts every

5 days with four forecasts on those days, so it is expected

that the ensemble members with shorter leads have

higher skill. Thus, assigning optimal weights to the 24

members seems appropriate. However, when we try to

use an optimization procedure to weigh them, it is quite

difficult to obtain stable weights. The computed weights

differ year by year through the cross-validation pro-

cedure, although the weighed ensemble can have sig-

nificantly higher skill without cross validation. This

indicates that there may well be an optimal combination

among different ensemble members, but the 27-yr hind-

casts are not long enough to get stable weights.

Another approach is to make use of the forecast in-

formation in the first 2 weeks. Within the Bayesian

framework and perhaps common in many other statis-

tical downscaling methods, the posterior distribution

will be very similar to the climatology if the forecast skill

is very low. Therefore, such downscaling methods can

have added value only if a forecast has skill. During the

first month, climate models usually have higher skill in

the first 2 weeks than in weeks 3 and 4. Thus, developing

independent likelihood functions for the first and second

half of the first month might provide additional infor-

mation. Furthermore, integrating the first 2-week fore-

casts from weather prediction models that have high

FIG. 8. Verification rank histograms for month-2 CFSv2 streamflow forecasts without postprocessing at 1734 gauges averaged over the

14 basins. Perfect rank uniformity is indicated by the horizontal dashed lines.

1 JULY 2013 YUAN ET AL . 4841



spatiotemporal resolutions and advanced data assimi-

lation procedures with the current seasonal forecasting

system will have a fundamental influence on seasonal

hydroclimatic forecast. Ongoing research in this area,

using the hindcasts from the National Oceanic and At-

mospheric Administration’s (NOAA’s) global medium

range ensemble forecast (GEFS; T. M. Hamill 2012,

personal communication) by the authors will test the

above hypothesis with the goal of integrating weather

and seasonal climate forecasts to develop a seamless

prediction system that can handle hydroclimatic fore-

casts at daily, monthly, and seasonal scales.

Besides developing long-term hindcast data and uti-

lizing information from medium-range weather fore-

casts, creating ensemble forecasts based on multiple

seasonal climate models is also an effective way to

increase the skill for hydroclimatic predictions. In

fact, many multimodel ensemble forecast systems al-

ready exist, such as European Operational Seasonal to

Interannual Prediction (EUROSIP), the World Mete-

orological Organization (WMO) Lead Centre for Long-

Range Forecast Multimodel Ensemble, and the newly

funded experimental National Multimodel Ensemble

(NMME) system. However, many models are sharing

similar atmospheric or oceanic components, and con-

sequently they may produce similar seasonal forecast

results. For example, by analyzing hindcasts from 12 sea-

sonal forecast models, Yuan and Wood (2012b) found

that a multimodel ensemble does not necessarily have

higher predictive skill than a single model, while

a proposed cluster ensemble has consistent improve-

ment against individual models. Therefore, identifying

the covariance structure of the multimodel system is

quite necessary before applying them to the hydro-

climatic forecast fields.

Improving the prediction of climate forcings such as

precipitation is one important aspect for advancing

the seasonal hydrologic forecast. Meanwhile, this paper

FIG. 9. Ratio of the ensemblemean forecasts of soil moisture drought frequency averaged among all forecasts in each calendarmonth at

0.5-month lead divided by those from offline simulation: (left) to (right) ESP, CFSv1, and CFSv2 and (top to bottom) 1 to 4–6 months

duration. As an example, the frequency of 3-month-duration drought is counted by using all forecasts that have continuously dry con-

ditions (,20%) in the first 3 months.
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shows that developing an appropriate postprocessing

procedure can also have significant contributions to

seasonal forecast skill. The rationale of postprocessing is

that the hydrologic models, though calibrated, may have

some uncorrected biases because of inadequate process

representations of the nonlinear rainfall–runoff rela-

tionship. Such biases could be amplified by the river

routing model either because it does not properly

FIG. 10. The R2 (%) of ESP ensemble mean forecasts of drought area calculated over the 14 basins as functions of target months

and leads.
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FIG. 11. Differences inR2 (%) of drought area between climate model–based forecasts and ESP calculated over the 14 basins as functions

of target months and leads: (a1)–(n1) CFSv1 2 ESP and (a2)–(n2) CFSv2 2 ESP.
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include river features like small dams or extractions or

because it is uncalibrated. We calibrated the VIC land

surface model, grid cell by grid cell, using observed

runoff ratio data (Troy et al. 2008) but did not calibrate

the routing model in this study. As seen in Fig. 7, the

postprocessing procedure can correct those biases by

matching the streamflow forecast distribution with the

observation distribution based on statistical bias cor-

rection methods, which is also discussed in detail in

Yuan and Wood (2012a). Such postprocessing pro-

cedures are also needed for the basins affected by hu-

man interventions such as reservoir management or

irrigation that have not been considered in most of the

land surface hydrologic and routing models. Addition-

ally, Fig. 8 shows that the forecasted streamflow has

underdispersion errors in ensemble prediction, although

the climate forcings both from ESP and Bayesian

downscaling are quite reliable. This indicates that there

are underrepresented uncertainties from initial condi-

tions and/or hydrologic models. Numerical experiments

by perturbing the initial conditions or model parameters

are needed for further diagnosis.

7. Summary

In this study, 6-month seasonal hindcasts of monthly

precipitation from the NCEP Climate Forecast System

[both version 1 (CFSv1) and version 2 (CFSv2)] for each

calendar month during 1982–2008 are downscaled to 1/88
over CONUS using a Bayesianmerging method. For the

predictive skill R2 of large basin-averaged ensemble

mean precipitation at 0.5-month lead, the results from

CFSv1 are generally higher than ESP, which is based on

randomly selected historical observations. The excep-

tion is for some basins during the transition seasons, as

discussed in the text (see section 3). CFSv2 has improved

precipitation predictive skill overCFSv1 formany regions,

especially during the winter and spring, and shows sig-

nificantly higher skill than ESP during wet seasons

over all studied large basins except the SE. In terms of

FIG. 12. The R2 (%) of drought severity accumulated over CONUS for different durations as functions of target months and leads: (left)

ESP, (middle) CFSv1, and (right) CFSv2 and (top to bottom) 1–3 months duration.
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root-mean-square error skill score (SSRMSE), both

CFSv1 and CFSv2 are better than ESP out to 6 months,

except for the 4.5-month lead forecasts over Ohio and

California. The SSRMSE conditional on Ni~no-3.4 SST

anomalies indicates that not all basins over CONUS are

positively affected by ENSO, but the forecasts condi-

tional on ENSO do have significantly higher skill than

the unconditional ones over the SE, Colorado basin, and

California in the first 3–4 months. The ranked proba-

bility skill score (RPSS) analysis demonstrated that

more than 50%–60% of the probabilistic forecasts from

CFSv1 and v2 are more skillful than ESP over each large

basin, and CFSv2 has moderate but consistent im-

provement against CFSv1 for the month-1 precipitation

probabilistic forecasts.

To evaluate the performance for seasonal hydrologic

prediction, the downscaled climate forcings, as well as

those fromESP, are used to drive VICmodel to produce

6-month, 20-ensemble hydrologic forecasts during 1982–

2008, with initial conditions from a 62-yr (1949–2010)

continuous offline simulation. Verification over 1734

USGS gauges indicates that CFSv2 reduces errors from

ESP by 4%–7% for month-1 streamflow forecasts av-

eraged over eastern basins, 10% over California, and

less than 4% over the west. The error reductions are

below 3% for the forecasts beyond 1 month, and CFSv1

is slightly worse than ESP over Ohio basin. For the

month-1 probabilistic streamflow forecasts, 57%–76%

of the CFSv1 forecasts and 60%–77% of the CFSv2

forecasts are more skillful than ESP. The climate

model–based streamflow probabilistic forecasts have

more advantages against ESP over western basins than

those over the east, but actually all three approaches

have very low skill over western basins as comparedwith

climatological forecasts that are based on climatological

streamflow observation distributions. The verification

rank histograms show that all three approaches have un-

derdispersion errors in the ensemble and overforecasting

biases for some arid basins. Those errors and biases make

ESP and climate model–based forecasts worse than cli-

matological forecasts beyond 1 month over many basins.

Therefore, we use the Bayesian postprocessing procedure

proposed by Yuan and Wood (2012a) to correct the

forecast. After postprocessing, all three approaches pro-

duce more skillful forecasts (.60%) out to 2 months,

when compared against climatological forecasts.

The assessment for drought prediction shows that

climate model–based forecasts produce more reason-

able drought frequency estimates than ESP over central

and eastern United States. Although the droughts with

durations longer than three months are very rare over

the eastern United States, where less than 30% of them

can be predicted, all three approaches have plausible

performances in predicting drought frequency over the

central United States out to 6 months. The predictive

skill of the spatial extent in drought is evaluated for each

large basin. ESP has higher drought area predictive skill

for the central U.S. basins than for other regions and

lower skill over humid basins than arid/semiarid basins.

For the arid basins and for the forecasts initiated during

dry seasons, initial soil moisture conditions have more

impact on the drought area predictive skill. The spatio-

temporal characteristics of R2 for drought extent from

CFSv1 and CFSv2 are similar to ESP, and CFSv2 is

generally better than CFSv1 and ESP. Significant im-

provement of CFSv2 occur for the forecasts initiated

during transition or dry seasons for humid basins and

during wet or dry seasons for arid basins. The predictive

skill of regional accumulated drought severity is ana-

lyzed for the CONUS region, and it is higher during

winter because of strong initial soil moisture control

and/or better precipitation predictions from the climate

models. Unlike precipitation forecasts that have low skill

in the summer, the predictive skill of drought severity is

higher in the summer than in spring or fall. Climate

models offer added value against ESP in forecasting

drought severity, especially for long lead forecasts. CFSv2

is slightly worse than CFSv1 during spring but better than

the latter during other seasons.

The CFSv2 shows some clear potential in forecasting

precipitation, streamflow and, soil moisture drought

based on our evaluation over CONUS. To further en-

hance seasonal hydroclimatic forecast skill, creating

long-term hindcast data, utilizing information from

medium-range weather forecasts, developing multi-

model ensemble system with consideration of their

covariance structure, and adopting appropriate post-

processing procedures are expected.
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