60 research outputs found

    Polarization-entangled photon pair sources based on spontaneous four wave mixing assisted by polarization mode dispersion

    Get PDF
    Photonic-based qubits and integrated photonic circuits have enabled demonstrations of quantum information processing (QIP) that promises to transform the way in which we compute and communicate. To that end, sources of polarization-entangled photon pair states are an important enabling technology, especially for polarization-based protocols. However, such states are difficult to prepare in an integrated photonic circuit. Scalable semiconductor sources typically rely on nonlinear optical effects where polarization mode dispersion (PMD) degrades entanglement. Here, we directly generate polarization-entangled states in an AlGaAs waveguide, aided by the PMD and without any compensation steps. We perform quantum state tomography and report a raw concurrence as high as 0.91±\pm0.01 observed in the 1100-nm-wide waveguide. The scheme allows direct Bell state generation with an observed maximum fidelity of 0.90±\pm0.01 from the 800-nm-wide waveguide. Our demonstration paves the way for sources that allow for the implementation of polarization-encoded protocols in large-scale quantum photonic circuits

    Multi-Core-shell structured LiFePO4@Na3V2(PO4)3@C composite for enhanced low-temperature performance of lithium ion batteries

    Get PDF
    In this work, a multi-core–shell-structured LiFePO4@Na3V2(PO4)3@C (LFP@NVP@C) composite was successfully designed and prepared to address inferior low-temperature performance of LiFePO4 cathode for lithium-ion batteries. Transmission electron microscopy (TEM) confirms the inner NVP and outer carbon layers co-existed on the surface of LFP particle. When evaluated at low-temperature operation, LFP@NVP@C composite exhibits an evidently enhanced electrochemical performance in term of higher capacity and lower polarization, compared with LFP@C. Even at − 10 °C with 0.5C, LFP@NVP@C delivers a discharge capacity of ca. 96.9 mAh·g−1 and discharge voltage of ca. 3.3 V, which is attributed to the beneficial contribution of NVP coating. NASICON-structured NVP with an open framework for readily insertion/desertion of Li+ will effectively reduce the polarization for the electrochemical reactions of the designed LFP@NVP@C composite

    Seasonal variations in carbon, nitrogen and phosphorus concentrations and C:N:P stoichiometry in different organs of a Larix principis-rupprechtii Mayr. plantation in the Qinling Mountains, China

    Get PDF
    Understanding how concentrations of elements and their stoichiometry change with plant growth and age is critical for predicting plant community responses to environmental change. Weusedlong-term field experiments to explore how the leaf, stem and root carbon (C), nitrogen (N) and phosphorous (P) concentrations and their stoichiometry changed with growth and stand age in a L.principis-rupprechtii Mayr. plantation from 2012–2015 in the Qinling Mountains, China. Our results showed that the C, N and P concentrations and stoichiometric ratios in different tissues of larch stands were affected by stand age, organ type andsampling month and displayed multiple correlations with increased stand age in different growing seasons. Generally, leaf C and N concentrations were greatest in the fast-growing season, but leaf P concentrations were greatest in the early growing season. However, no clear seasonal tendencies in the stem and root C, N and P concentrations were observed with growth. In contrast to N and P, few differences were found in organ-specific C concentrations. Leaf N:P was greatest in the fast-growing season, while C:N and C:P were greatest in the late-growing season. No clear variations were observed in stem and root C:N, C:P andN:Pthroughout the entire growing season, but leaf N:P was less than 14, suggesting that the growth of larch stands was limited by N in our study region. Compared to global plant element concentrations and stoichiometry, the leaves of larch stands had higher C, P, C:NandC:PbutlowerNandN:P,andtherootshadgreater PandC:NbutlowerN,C:Pand N:P. Our study provides baseline information for describing the changes in nutritional elements with plant growth, which will facilitates plantation forest management and restoration, and makes avaluable contribution to the global data pool on leaf nutrition and stoichiometry

    Amplifying Single-Photon Nonlinearity Using Weak Measurements

    No full text

    Cost sensitive GPS-based activity recognition

    No full text
    GPS-based activity recognition is extremely important for high-level analysis and location based services. Trajectories of people are highly imbalanced from spatial and temporal perspectives. Many existing researches achieve good results on recognizing activities with lots of GPS logs, such as working and staying at home. However, these approaches usually fail at activities with few trajectory records. In this paper, we propose a cost sensitive GPS-based activity recognition model to improve accuracy of minority activities which could imply users' personal preferences. The approach aims at providing more balanced results. We first propose a cost function to measure spatial and temporal regularities of each activity on a stay point. Then we incorporate cost function into activity recognition algorithm. We take hidden Markov model as an example in this study. Experiments show good performance of our approach in several evaluation metrics. It could provide more balanced and valuable activity recognition results from GPS trajectories.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000341633700165&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=8e1609b174ce4e31116a60747a720701Computer Science, Artificial IntelligenceComputer Science, Information SystemsEICPCI-S(ISTP)
    • …
    corecore